Эркер
853 0

Все в полном объеме про десятичные дроби. Действия с десятичными дробями

Эта статья продесятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.

Навигация по странице.

Десятичная запись дробного числа

Чтение десятичных дробей

Скажем пару слов о правилах чтения десятичных дробей.

Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».

Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число, поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».

Разряды в десятичных дробях

В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить оразрядах в десятичных дробях , так же как и о разрядах в натуральных числах.

Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.

Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.

Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться отстарших кмладшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, амладшим (низшим) - разряд десятитысячных.

Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел. Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .

Конечные десятичные дроби

До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.

Определение.

Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .

Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби.

Бесконечные десятичные дроби: периодические дроби и непериодические дроби

В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.

Определение.

Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.

Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .

Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.

Определение.

Периодические десятичные дроби (или простопериодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называютпериодом дроби .

Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .

Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .

Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .

Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .

Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.

Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.

Определение.

Непериодические десятичные дроби (или простонепериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.

Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.

Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа.

Действия с десятичными дробями

Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметическихдействия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.

Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей, отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел. Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения.

Переходим к следующему действию -умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей. В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения.

Десятичные дроби на координатном луче

Между точками и десятичными дробями существует взаимно однозначное соответствие.

Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.

Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче. Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.

Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.

Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.

Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например,, тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.

Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемоедесятичное измерение отрезка . Разберемся, как оно проводится.

Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.

К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .

Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

§ 31. Задачи и примеры на все действия с десятичными дробями.

Выполнить указанные действия:

767. Найти частное от деления:

772. Вычислить:

Найтих , если:

776. Неизвестное число умножили на разность чисел 1 и 0,57 и в произведении получили 3,44. Найти неизвестное число.

777. Сумму неизвестного числа и 0,9 умножили на разность между 1 и 0,4 и в произведении получили 2,412. Найти неизвестное число.

778. По данным диаграммы о выплавке чугуна в РСФСР (рис. 36) составить задачу, для решения которой надо применить действия сложения, вычитания и деления.

779. 1) Длина Суэцкого канала 165,8 км, длина Панамского канала меньше Суэцкого на 84,7 км, а длина Беломорско-Балтийского канала на 145,9 км больше длины Панамского. Какова длина Беломорско-Балтийского канала?

2) Московское метро (к 1959 г.) было построено в 5 очередей. Длина первой очереди метро 11,6 км, второй -14,9 км, длина третьей на 1,1 км меньше длины второй очереди, длина четвёртой очереди на 9,6 км больше третьей очереди, а длина пятой очереди на 11,5 км меньше четвёртой. Чему равна длина Московского метро к началу 1959 г.?

780. 1) Наибольшая глубина Атлантического океана 8,5 км, наибольшая глубина Тихого ркеана на 2,3 км больше глубины Атлантического океана, а наибольшая глубина Северного Ледовитого океана в 2 раза меньше наибольшей глубины Тихого океана. Какова наибольшая глубина Северного Ледовитого океана?

2) Автомобиль «Москвич» на 100 км пути расходует 9 л бензина, автомобиль «Победа» на 4,5 л больше, чем расходует «Москвич», а «Волга» в 1,1 раза больше «Победы». Сколько бензина расходует автомобиль «Волга» на 1 км пути? (Ответ округлить с точностью до 0,01 л.)

781. 1) Ученик во время каникул поехал к дедушке. По железной дороге он ехал 8,5 часа, а от станции на лошадях 1,5 часа. Всего он проехал 440 км. С какой скоростью ученик ехал по железной дороге, если на лошадях он ехал со скоростью 10 км в час?

2) Колхознику надо было быть в пункте, находящемся на расстоянии 134,7 км от его дома. 2,4 часа он ехал на автобусе со средней скоростью 55 км в час, а остальную часть пути он прошёл пешком со скоростью 4,5 км в час. Сколько времени он шёл пешком?

782. 1) За лето один суслик уничтожает около 0,12 ц хлеба. Пионеры весной истребили на 37,5 га 1 250 сусликов. Сколько хлеба сохранили школьники для колхоза? Сколько сбережённого хлеба приходится на 1 га?

2) Колхоз подсчитал, что, уничтожив сусликов на площади в 15 га пашни, школьники сберегли 3,6 т зерна. Сколько сусликов в среднем уничтожено на 1 га земли, если один суслик за лето уничтожает 0,012 т зерна?

783. 1) При размоле пшеницы на муку теряется 0,1 её веса, а при выпечке получается припёк, равный 0,4 веса муки. Сколько печёного хлеба получится из 2,5 т пшеницы?

2) Колхоз собрал 560 т семян подсолнуха. Сколько подсолнечного масла изготовят из собранного зерна, если вес зерна составляет 0,7 веса семян подсолнуха, а вес полученного масла составляет 0,25 веса зерна?

784. 1) Выход сливок из молока составляет 0,16 веса молока, а выход масла из сливок составляет 0,25 веса сливок. Сколько требуется молока (по весу) для получения 1 ц масла?

2) Сколько килограммов белых грибов надо собрать для получения 1 кг сушёных, если при подготовке к сушке остаётся 0,5 веса, а при сушке остаётся 0,1 веса обработанного гриба?

785. 1) Земля, отведённая колхозу, использована так: 55% её занято пашней, 35% -лугом, а вся остальная земля в количестве 330,2 га отведена под колхозный сад и под усадьбы колхозников. Сколько всего земли в колхозе?

2) Колхоз засеял 75% всей посевной площади зерновыми культурами, 20% -овощными, а остальную площадь кормовыми травами. Сколько посевной площади имел колхоз, если кормовыми травами он засеял 60 га?

786. 1) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника длиной 875 м и шириной 640 м, если на 1 га высевать 1,5 ц семян?

2) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника, если его периметр равен 1,6 км? Ширина поля 300 м. На засев 1 га требуется 1,5 ц семян.

787. Сколько пластинок квадратной формы со стороной в 0,2 дм поместится в прямоугольнике размером 0,4 дм х 10 дм?

788. Читальный зал имеет размеры 9,6 м х 5м х 4,5 м. На сколько мест рассчитан читальный зал, если на каждого человека необходимо 3 куб. м воздуха?

789. 1) Какую площадь луга скосит трактор с прицепом четырёх косилок за 8 час, если ширина захвата каждой косилки 1,56 м и скорость трактора 4,5 км в час? (Время на остановки не учитывается.) (Ответ округлить с точностью до 0,1 га.)

2) Ширина захвата тракторной овощной сеялки равна 2,8 м. Какую площадь можно засеять этой сеялкой за 8 час. работы при скорости 5 км в час?

790. 1) Найти выработку трёхкорпусного тракторного плуга за 10 час. работы, если скорость трактора 5 км в час, захват одного корпуса 35 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.)

2) Найти выработку пятикорпусного тракторного плуга за 6 час. работы, если скорость трактора 4,5 км в час, захват одного корпуса 30 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.)

791. Расход воды на 5 км пробега для паровоза пассажирского поезда равен 0,75 т. Водяной бак тендера вмещает 16,5 т воды. На сколько километров пути хватит воды поезду, если бак был наполнен на 0,9 своей вместимости?

792. На запасном пути могут поместиться только 120 товарных вагонов при средней длине вагона в 7,6 м. Сколько поместится на этом пути четырёхосных пассажирских вагонов длиной в 19,2 м каждый, если на этом пути будут помещены ещё 24 товарных вагона?

793. Для прочности железнодорожной насыпи рекомендуется производить укрепление откосов посредством посева полевых трав. На каждый квадратный метр насыпи требуется 2,8 г семян стоимостью 0,25 руб. за 1 кг. Сколько будет стоить засев 1,02 га откосов, если стоимость работ составит 0,4 от стоимости семян? (Ответ округлить с точностью до 1 руб.)

794. Кирпичный завод доставил на станцию железной дороги кирпичи. На перевозке кирпичей работали 25 лошадей и 10 грузовых машин. Каждая лошадь перевозила 0,7 т за одну поездку и в день совершала 4 поездки. Каждая машина перевозила за одну поездку 2,5 т и в день совершала 15 поездок. Перевозка продолжалась 4 дня. Сколько штук кирпичей было доставлено на станцию, если средний вес одного кирпича 3,75 кг? (Ответ округлить с точностью до 1 тыс. штук.)

795. Запас муки был распределён между тремя пекарнями: первая получила 0,4 всего запаса, вторая 0,4 остатка, а третья пекарня получила муки на 1,6 т меньше, чем первая. Сколько всего муки было распределено?

796. На втором курсе института 176 студентов, на третьем 0,875 этого числа, а на первом в полтора раза больше того, что было на третьем курсе. Число студентов на первом, втором и третьем курсах составляло 0,75 всего числа студентов этого института. Сколько студентов было в институте?

___________

797. Найти среднее арифметическое:

1) двух чисел: 56,8 и 53,4; 705,3 и 707,5;

2) трёх чисел: 46,5; 37,8 и 36; 0,84; 0,69 и 0,81;

3) четырёх чисел: 5,48; 1,36; 3,24 и 2,04.

798. 1) Утром температура была 13,6°, в полдень 25,5°, а вечером 15,2°. Вычислить среднюю температуру за этот день.

2) Какова средняя температура за неделю, если в течение недели термометр показал: 21°; 20,3°; 22,2°; 23,5°; 21,1°; 22,1°; 20,8°?

799. 1) Школьная бригада в первый день прополола 4,2 га свёклы, во второй день 3,9 га, а в третий 4,5 га. Определять среднюю выработку бригады за день.

2) Для установления нормы времени на изготовление новой детали были поставлены 3 токаря. Первый изготовил деталь за 3,2 мин., второй за 3,8 мин., а третий за 4,1 мин. Вычислить норму времени, которая была установлена на изготовление детали.

800. 1) Среднее арифметическое двух чисел 36,4. Одно из этих чисел 36,8. Найти другое.

2) Температуру воздуха измеряли три раза в день: утром, в полдень и вечером. Найти температуру воздуха утром, если в полдень было 28,4°, вечером 18,2° тепла, а средняя температура дня 20,4°.

801. 1) Автомобиль проехал за первые два часа 98,5 км, а за последующие три часа 138 км. Сколько километров в среднем проезжал автомобиль в час?

2) Пробный улов и взвешивание карпов-годовичков показал, что из 10 карпов 4 имели вес по 0,6 кг, 3 по 0,65 кг, 2 по 0,7 кг и 1 весил 0,8 кг. Каков в среднем вес карпа-годовичка?

802. 1) К 2 л сиропа стоимостью 1,05 руб. за 1 л добавили 8 л воды. Сколько стоит 1 л полученной воды с сиропом?

2) Хозяйка купила банку консервированного борща объёмом 0,5 л за 36 коп. и прокипятила с 1,5 л воды. Во что обошлась тарелка борща, если её объём равен 0,5 л?

803. Лабораторная работа «Измерение расстояния между двумя точками»,

1-й приём. Измерение рулеткой (мерной лентой). Класс разбивается на звенья по три человека в каждом. Принадлежности: 5-6 вех и 8-10 бирок.

Ход выполнения работы: 1) отмечаются точки А и Б и между ними провешивают прямую (см. задачу 178); 2) укладывают рулетку, вдоль провешенной прямой и каждый раз отмечают биркой конец рулетки. 2-й приём. Измерение, шагами. Класс разбивается на звенья по три человека в каждом. Каждый учащийся проходит расстояние от А до Б, считая число своих шагов. Умножив среднюю длину своего шага на полученное число шагов, находят расстояние от А до Б.

3-й приём. Измерение "на глаз". Каждый из учащихся вытягивает левую руку с поднятым большим пальцем (рис. 37) и направляет большой палец на веху в точку Б (на рисунке - дерево) так, чтобы левый глаз (точка А), большой палец и точка Б находились на одной прямой. Не изменяя положения, закрывают левый глаз и смотрят правым на большой палец. Измеряют на глаз полученное смещение и увеличивают его в 10 раз. Это и есть расстояние от А до Б.

_________________

804. 1) По переписи 1959 г. население СССР составляло 208,8 млн. человек, причем сельского населения было на 9,2 млн. человек больше, чем городского. Сколько было городского и сколько сельского населения в СССР в 1959 г.?

2) По переписи 1913 г. население России составляло 159,2 млн. человек, причём городского населения было на 103,0 млн. человек меньше, чем сельского. Сколько было городского и сельского населения в России в 1913 г.?

805. 1) Длина проволоки 24,5 м. Эту проволоку разрезали на две части так, что первая часть получилась на 6,8 м длиннее, чем вторая. Сколько метров длины имеет каждая часть?

2) Сумма двух чисел 100,05. Одно число на 97,06 больше другого. Найти эти числа.

806. 1) На трёх угольных складах 8656,2 т угля, на втором складе на 247,3 т угля больше, чем на первом, а на третьем на 50,8 т больше, чем на втором. Сколько тонн угля на каждом складе?

2) Сумма трёх чисел 446,73. Первое число меньше второго на 73,17 и больше третьего на 32,22. Найти эти числа.

807. 1) Катер по течению реки шёл со скоростью 14,5 км в час, а против течения со скоростью 9,5 км в час. Какова скорость катера в стоячей воде и какова скорость течения реки?

2) Пароход прошёл за 4 часа по течениию реки 85,6 км, а против течения за 3 часа 46,2 км. Какова скорость парохода в стоячей воде и какова скорость течения реки?

_________

808. 1) Два парохода доставили 3 500 т груза, причём один пароход доставил в 1,5 раза груза больше, чем другой. Сколько груза доставил каждый пароход?

2) Площадь двух комнат 37,2 кв. м. Площадь одной комнаты в 2 раза больше другой. Чему равна площадь каждой комнаты?

809. 1) Из двух населённых пунктом, расстояние между которыми 32,4 км одновременно выехали навстречу друг другу мотоциклист и велосипедист. Сколько километров проедет каждый из них до встречи, если скорость мотоциклиста в 4 раза больше скорости велосипедиста?

2) Найти два числа, сумма которых 26,35, а частное от деления одного числа на другое равно 7,5.

810. 1) Завод отправил три вида груза общим весом в 19,2 т. Вес груза первого вида был втрое больше веса груза второго вида, а вес груза третьего вида был вдвое меньше, чем вес груза первого и второго видов вместе. Каков вес груза каждого вида?

2) За три месяца бригада горняков добыла 52,5 тыс. т железной руды. За март добыто в 1,3, за февраль в 1,2 раза больше, чем за январь. Сколько руды добывала бригада ежемесячно?

811. 1) Газопровод Саратов - Москва на 672 км длиннее канала имени Москвы. Найти длину того и другого сооружения, если длина газопровода в 6,25 раза больше длины канала имени Москвы.

2) Длина реки Дона в 3,934 раза больше длины реки Москвы. Найти длину каждой реки, если длина реки Дона больше длины реки Москвы на 1 467 км.

812. 1) Разность двух чисел 5,2, а частное от деления одного числа на другое 5. Найти эти числа.

2) Разность двух чисел 0,96, а их частное 1,2. Найти эти числа.

813. 1) Одно число на 0,3 меньше другого и составляет 0,75 его. Найти эти числа.

2) Одно число на 3,9 больше другого числа. Если меньшее число увеличить в 2 раза, то оно составит 0,5 от большего. Найти эти числа.

814. 1) Колхоз засеял пшеницей и рожью 2600 га земли. Сколько гектаров земли было засеяно пшеницей и сколько рожью, если 0,8 площади, засеянной пшеницей, равны 0,5 площади, засеянной рожью?

2) Коллекция двух мальчиков вместе составляет 660 марок. Из скольких марок состоит коллекция каждого мальчика, если 0,5 числа марок первого мальчика равны 0,6 числа марок коллекции второго мальчика?

815. Два ученика вместе имели 5,4 руб. После того как первый истратил 0,75 своих денег, а второй 0,8 своих денег, у них осталось денег поровну. Сколько денег было у каждого ученика?

816. 1) Два парохода вышли навстречу друг другу из двух портов, расстояние между которыми 501,9 км. Через сколько времени они встретятся, если скорость первого парохода 25,5 км в час, а скорость второго 22,3 км в час?

2) Два поезда вышли навстречу друг другу из двух пунктов, расстояние между которыми 382,2 км. Через сколько времени они встретятся, если средняя скорость первого поезда была 52,8 км в час, а второго 56,4 км в час?

817. 1) Из двух городов, расстояние между которыми 462 км, одновременно выехали два автомобиля и встретились через 3,5 часа. Найти скорость каждого автомобиля, если скорость первого была на 12 км в час больше скорости второго автомобиля.

2) Из двух населённых пунктов, расстояние между которыми 63 км, одновременно выехали навстречу друг другу мотоциклист и велосипедист и встретились через 1,2 часа. Найти скорость мотоциклиста, если велосипедист ехал со скоростью на 27,5 км в час меньшей скорости мотоциклиста.

818. Ученик заметил, что поезд, состоящий из паровоза и 40 вагонов, проходил мимо него 35 сек. Определить скорость поезда в час, если длина паровоза 18,5 м, а длина вагона 6,2 м. (Ответ дать с точностью до 1 км в час.)

819. 1) Из А в Б выехал велосипедист со средней скоростью 12,4 км в час. Спустя 3 часа 15 мин. из Б навстречу ему выехал другой велосипедист со средней скоростью 10,8 км в час. Через сколько часов и на каком расстоянии от А они встретятся, если 0,32 расстояния между А и Б равны 76 км?

2) Из городов А и Б, расстояние между которыми 164,7 км, выехали навстречу друг другу грузовая машина из города А и легковая - из города Б. Скорость грузовой машины 36 км, а легковой в 1,25 раза больше. Легковая машина вышла на 1,2 часа позже грузовой. Через сколько времени и на каком расстоянии от города Б легковая машина встретит грузовую?

820. Два парохода вышли одновременно из одного порта и идут в одном направлении. Первый пароход в каждые 1,5 часа проходит 37,5 км, а второй в каждые 2 часа проходит 45 км. Через сколько времени первый пароход будет находиться от второго на расстоянии 10 км?

821. Из одного пункта вначале вышел пешеход, а через 1,5 часа после его выхода выехал в том же направлении велосипедист. На каком расстоянии от пункта велосипедист догнал пешехода, если пешеход шёл со скоростью 4,25 км в час, а велосипедист ехал со скоростью 17 км в час?

822. Поезд вышел из Москвы в Ленинград в 6 час. 10 мин. утра и шёл со средней скоростью 50 км п час. Позднее из Москвы в Ленинград вылетел пассажирский самолет и прилетел в Ленинград одновременно с прибытием поезда. Средняя скорость самолёта была 325 км в час, а расстояние между Москвой и Ленинградом 650 км. Когда самолёт вылетел из Москвы?

823. Пароход по течению реки шёл 5 час, а против течения 3 часа и прошёл всего 165 км. Сколько километров он прошёл по течению и сколько против течении, если скорость течения реки 2,5 км в час?

824. Поезд вышел из А и должен прибыть в Б в определённое время; пройдя половину пути и делая по 0,8 км в 1 мин., поезд был остановлен на 0,25 часа; увеличив далее скорость на 100 м в 1 млн., поезд прибыл в Б вовремя. Найти расстояние между А и Б.

825. От колхоза до города 23 км. Из города в колхоз выехал на велосипеде почтальон со скоростью 12,5 км в час. Через 0,4 часа после этого ИВ колхоза в город выехал на лошади колхозник со скоростью, ранной 0,6 скорости почтальона. Через сколько времени после своего выезда колхозник встретит почтальона?

826. Из города А в город Б, отстоящий от А на 234 км, выехал автомобиль со скоростью 32 км в час. Через 1,75 часа после этого из города Б выехал навстречу первому второй автомобиль, скорость которого в 1,225 раза больше скорости первого. Через сколько часов после своего выезда второй автомобиль встретит первы

827. 1) Одна машинистка может перепечатать рукопись за 1,6 часа, а другая за 2,5 часа. За сколько времени обе машинистки перепечатают эту рукопись, работая совместно? (Ответ округлить с точностью до 0,1 часа.)

2) Бассейн наполняется двумя насосами различной мощности. Первый насос, работая один, может наполнить бассейн за 3,2 часа, а второй за 4 часа. За сколько времени наполнится бассейн при одновременной работе этих насосов? (Ответ округлить с точностью до 0,1.)

828. 1) Одна бригада может выполнить некоторый заказ за 8 дней. Другой на выполнение этого заказа требуется 0,5 времени первой. Третья бригада может выполнить этот заказ за 5 дней. За сколько дней будет выполнен весь заказ при совместной работе трёх бригад? (Ответ округлить с точностью до 0,1 дня.)

2) Первый рабочий может выполнить заказ за 4 часа, второй в 1,25 раза быстрее, а третий за 5 час. За сколько часов будет выполнен заказ при совместной работе трёх рабочих? (Ответ округлить с точностью до 0,1 часа.)

829. На уборке улицы работают две машины. Первая из них может убрать всю улицу за 40 мин., второй для этого требуется 75% времени первой. Обе машины начали работу одновременно. После совместной рвботы в течение 0,25 часа вторая машина прекратила работу. Во сколько времени после этого первая машина закончила работу по уборке улицы?

830. 1) Одна из сторон треугольника 2,25 см, вторая на 3,5 см больше первой, а третья на 1,25 см меньше второй. Найти периметр треугольника.

2) Одна из сторон треугольника 4,5 см, вторая на 1,4 см меньше первой, а третья сторона равна полусумме двух первых сторон. Чему равен периметр треугольника?

831 . 1) Основание треугольника 4,5 см, а высота его на 1,5 см меньше. Найти площадь треугольника.

2) Высота треугольника 4,25 см, а его основание в 3 раза больше. Найти площадь треугольника. (Ответ округлить с точностью до 0,1.)

832. Найти площади заштрихованных фигур (рис. 38).

833. Какая площадь больше: прямоугольника со сторонами 5 см и 4 см, квадрата со стороной 4,5 см или треугольника, основание и высота которого равны по 6 см?

834. Комната имеет длину 8,5 м, ширину 5,6 м и высоту 2,75 м. Площадь окон, дверей и печей составляет 0,1 общей площади стен комнаты. Сколько кусков обоев понадобится для оклеивания этой комнаты, если кусок обоев имеет длину 7 м и ширину 0,75 м? (Ответ округлить с точностью до 1 куска.)

835. Надо снаружи оштукатурить и побелить одноэтажный дом, размеры которого: длина 12 м, ширина 8 м и высота 4,5 м. В доме 7 окон размером каждое 0,75 м х 1,2 м и 2 двери каждая размером 0,75 м х 2,5 м. Сколько будет стоить вся работа, если побелка и штукатурка 1 кв. м стоит 24 коп.? (Ответ округлить а точностью до 1 руб.)

836. Вычислите поверхность и объём вашей комнаты. Размеры комнаты найдите измерением.

837. Огород имеет форму прямоугольника, длина которого 32 м, ширина 10 м. 0,05 всей площади огорода засеяно морковью, а остальная часть огорода засажена картофелем и луком, причём картофелем засажена площадь в 7 paз большая, чем луком. Сколько земли в отдельности засажено картофелем, луком и морковью?

838. Огород имеет форму прямоугольника, длина которого 30 м и ширина 12 м. 0,65 всей площади огорода засажено картофелем, а остальная часть - морковью и свёклой, причём свёклой засажено на 84 кв. м больше, чем морковью. Сколько земли в отдельности под картофелем, свёклой и морковью?

839. 1) Ящик, имеющий форму куба, обшили со всех сторон фанерой. Сколько фанеры израсходовано, если ребро куба 8,2 дм? (Ответ округлить с точностью до 0,1 кв. дм.)

2) Сколько краски потребуется для окраски куба с ребром в 28 см, если на 1 кв. см будет истрачено 0,4 г краски? (Ответ, округлить с точностью до 0,1 кг.)

840. Длина чугунной заготовки, имеющей форму прямоугольного параллелепипеда, равна 24,5 см, ширина 4,2 см и высота 3,8 см. Сколько весят 200 чугунных заготовок, если 1 куб. дм чугуна весит 7,8 кг? (Ответ округлить с точностью до 1 кг.)

841. 1) Длина ящика (с крышкой), имеющего форму прямоугольного параллелепипеда, равна 62,4 см, ширина 40,5 см, высота 30 см. Сколько квадратных метров досок пошло на изготовление ящика, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 0,1 кв. м.)

2) Дно и боковые стенки ямы, имеющей форму прямоугольного параллелепипеда, должны быть обшиты досками. Длина ямы 72,5 м, ширина 4,6 м и высота 2,2 м. Сколько квадратных метров досок пошло на обшивку, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 1 кв. м.)

842. 1) Длина подвала, имеющего форму прямоугольного параллелепипеда, равна 20,5 м, ширина 0,6 его длины, а высота 3,2 м. Подвал заполнили картофелем на 0,8 его объёма. Сколько тонн картофеля поместилось в подвале, если 1 куб.м картофеля весит 1,5 т? (Ответ округлить с точностью до 1 т.)

2) Длина бака, имеющего форму прямоугольного параллелепипеда, равна 2,5 м, ширина 0,4 его длины, а высота 1,4 м. Бак наполнен керосином на 0,6 его объёма. Сколько тонн керосина налито в бак, если вес керосина в объёме 1 куб. м равен 0,9 т? (Ответ округлить с точностью до 0,1 т.)

843. 1) Во сколько времени можно обновить воздух в комнате, имеющей 8,5 м длины, 6 м ширины и 3,2 м высоты, если через форточку в 1 сек. проходит 0,1 куб. м воздуха?

2) Произведите подсчёт времени, необходимого для обновления воздуха в вашей комнате.

844. Размеры бетонного блока для постройки стен следующие: 2,7 м х 1,4 м х 0,5 м. Пустота составляет 30% объёма блока. Сколько кубометров бетона потребуется на изготовление 100 таких блоков?

845. Грейдер-элеватор (машина для рытья канав) за 8 час. работы делает канаву шириной 30 см, глубиной 34 см и длиной 15 км. Скольких землекопов заменяет такая машина, если один землекоп может вынуть 0,8 куб. м в час? (Результат округлить.)

846. Закром в форме прямоугольного параллелепипеда имеет в длину 12 м и в ширину 8 ж. В этом закроме насыпано зерно до высоты 1,5 м. Для того чтобы узнать, сколько весит всё зерно, взяли ящик длиной 0,5 м, шириной 0,5 м и высотой 0,4 м, наполнили его зерном и взвесили. Сколько весило зерно в закроме, если зерно в ящике весило 80 кг?

849. Построить линейную диаграмму роста городского населения в СССР, если в 1913 г. городского населения было 28,1 млн человек, в 1926 г.-24,7 млн., в 1939 г.-56,1 млн. и в 1959г- 99,8 млн. человек.

850. 1) Составить смету на ремонт помещения вашего класса, если требуется побелить стены и потолок, а также покрасить пол. Данные для составления сметы (размеры класса, стоимость побелки 1 кв. м, стоимость покраски пола 1 кв. м) выяснить у завхоза школы.

2) Для посадки в саду школа купила саженцы: 30 яблонь по 0,65 руб. за штуку, 50 вишен по 0,4 руб. за штуку, 40 кустов крыжовника по 0,2 руб. и 100 кустов малины по 0,03 руб. за куст. Напишите счёт на эту покупку по образцу:

ОТВЕТЫ

В этом уроке мы рассмотрим каждую из этих операций по отдельности.

Содержание урока

Сложение десятичных дробей

Как мы знаем, десятичная дробь имеет целую и дробную часть. При сложении десятичных дробей, целые и дробные части складываются по отдельности.

Например, сложим десятичные дроби 3,2 и 5,3. Десятичные дроби удобнее складывать в столбик.

Запишем сначала эти две дроби в столбик, при этом целые части обязательно должны быть под целыми, а дробные под дробными. В школе это требование называют «запятая под запятой» .

Запишем дроби в столбик так, чтобы запятая оказалась под запятой:

Начинаем складывать дробные части: 2 + 3= 5. Записываем пятёрку в дробной части нашего ответа:

Теперь складываем целые части: 3 + 5 = 8. Записываем восьмёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой» :

Получили ответ 8,5. Значит выражения 3,2 + 5,3 равно 8,5

На самом деле, не всё так просто, как кажется на первый взгляд. Здесь тоже имеются свои подводные камни, о которых мы сейчас поговорим.

Разряды в десятичных дробях

У десятичных дробей, как и у обычных чисел, есть свои разряды. Это разряды десятых, разряды сотых, разряды тысячных. При этом разряды начинаются после запятой.

Первая цифра после запятой отвечает за разряд десятых, вторая цифра после запятой за разряд сотых, третья цифра после запятой за разряд тысячных.

Разряды в десятичных дробях хранят в себе некоторую полезную информацию. В частности, они сообщают сколько в десятичной дроби десятых частей, сотых частей и тысячных частей.

Например, рассмотрим десятичную дробь 0,345

Позиция, где находится тройка, называетсяразрядом десятых

Позиция, где находится четвёрка, называетсяразрядом сотых

Позиция, где находится пятёрка, называетсяразрядом тысячных

Посмотрим на данный рисунок. Видим, что в разряде десятых располагается тройка. Это говорит о том, что в десятичной дроби 0,345 содержится три десятых.

Если мы сложим дроби, и то получим изначальную десятичную дробь 0,345

Видно, что сначала мы получили ответ, но перевели его в десятичную дробь и получили 0,345.

При сложении десятичных дробей соблюдаются те же принципы и правила, что и при сложении обычных чисел. Сложение десятичных дробей происходит по разрядам: десятые части складываются с десятыми частями, сотые с сотыми, тысячные с тысячными.

Поэтому при сложении десятичных дробей требуют соблюдать правило «запятая под запятой» . Запятая под запятой обеспечивает тот самый порядок, в котором десятые части складываются с десятыми, сотые с сотыми, тысячные с тысячными.

Пример 1. Найти значение выражения 1,5 + 3,4

В первую очередь складываем дробные части 5 + 4 = 9. Записываем девятку в дробной части нашего ответа:

Теперь складываем целые части 1 + 3 = 4. Записываем четвёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой»:

Получили ответ 4,9. Значит значение выражения 1,5 + 3,4 равно 4,9

Пример 2. Найти значение выражения: 3,51 + 1,22

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»

В первую очередь складываем дробную часть, а именно сотые части 1+2=3. Записываем тройку в сотой части нашего ответа:

Теперь складываем десятые части 5+2=7. Записываем семёрку в десятой части нашего ответа:

Теперь складываем целые части 3+1=4. Записываем четвёрку в целой части нашего ответа:

Отделяем запятой целую часть от дробной, соблюдая правило «запятая под запятой»:

Получили ответ 4,73. Значит значение выражения 3,51 + 1,22 равно 4,73

3,51 + 1,22 = 4,73

Как и в обычных числах, при сложении десятичных дробей может произойти. В этом случае в ответе записывается одна цифра, а остальные переносят на следующий разряд.

Пример 3. Найти значение выражения 2,65 + 3,27

Записываем в столбик данное выражение:

Складываем сотые части 5+7=12. Число 12 не поместится в сотой части нашего ответа. Поэтому в сотой части записываем цифру 2, а единицу переносим на следующий разряд:

Теперь складываем десятые части 6+2=8 плюс единица, которая досталась от предыдущей операции, получим 9. Записываем цифру 9 в десятой части нашего ответа:

Теперь складываем целые части 2+3=5. Записываем цифру 5 в целой части нашего ответа:

Получили ответ 5,92. Значит значение выражения 2,65 + 3,27 равно 5,92

2,65 + 3,27 = 5,92

Пример 4. Найти значение выражения 9,5 + 2,8

Записываем в столбик данное выражение

Складываем дробные части 5 + 8 = 13. Число 13 не поместится в дробной часть нашего ответа, поэтому сначала записываем цифру 3, а единицу переносим на следующий разряд, точнее переносим её к целой части:

Теперь складываем целые части 9+2=11 плюс единица, которая досталась от предыдущей операции, получаем 12. Записываем число 12 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 12,3. Значит значение выражения 9,5 + 2,8 равно 12,3

9,5 + 2,8 = 12,3

При сложении десятичных дробей количество цифр после запятой в обеих дробях должно быть одинаковым. Если цифр не хватает, то эти места в дробной части заполняются нулями.

Пример 5 . Найти значение выражения: 12,725 + 1,7

Прежде чем записывать в столбик данное выражение, сделаем количество цифр после запятой в обеих дробях одинаковым. В десятичной дроби 12,725 после запятой три цифры, а в дроби 1,7 только одна. Значит в дроби 1,7 в конце нужно добавить два нуля. Тогда получим дробь 1,700. Теперь можно записать в столбик данное выражение и начать вычислять:

Складываем тысячные части 5+0=5. Записываем цифру 5 в тысячной части нашего ответа:

Складываем сотые части 2+0=2. Записываем цифру 2 в сотой части нашего ответа:

Складываем десятые части 7+7=14. Число 14 не поместится в десятой части нашего ответа. Поэтому сначала записываем цифру 4, а единицу переносим на следующий разряд:

Теперь складываем целые части 12+1=13 плюс единица, которая досталась от предыдущей операции, получаем 14. Записываем число 14 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 14,425. Значит значение выражения 12,725+1,700 равно 14,425

12,725+ 1,700 = 14,425

Вычитание десятичных дробей

При вычитании десятичных дробей нужно соблюдать те же правила, что и при сложении: «запятая под запятой» и «равное количества цифр после запятой».

Пример 1. Найти значение выражения 2,5 − 2,2

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

Вычисляем дробную часть 5−2=3. Записываем цифру 3 в десятой части нашего ответа:

Вычисляем целую часть 2−2=0. Записываем ноль в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 0,3. Значит значение выражения 2,5 − 2,2 равно 0,3

2,5 − 2,2 = 0,3

Пример 2. Найти значение выражения 7,353 — 3,1

В этом выражении разное количество цифр после запятой. В дроби 7,353 после запятой три цифры, а в дроби 3,1 только одна. Значит в дроби 3,1 в конце нужно добавить два нуля, чтобы сделать количество цифр в обеих дробях одинаковым. Тогда получим 3,100.

Теперь можно записать в столбик данное выражение и вычислить его:

Получили ответ 4,253. Значит значение выражения 7,353 − 3,1 равно 4,253

7,353 — 3,1 = 4,253

Как и в обычных числах, иногда придётся занимать единицу у соседнего разряда, если вычитание станет невозможным.

Пример 3. Найти значение выражения 3,46 − 2,39

Вычитаем сотые части 6−9. От число 6 не вычесть число 9. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда число 6 обращается в число 16. Теперь можно вычислить сотые части 16−9=7. Записываем семёрку в сотой части нашего ответа:

Теперь вычитаем десятые части. Поскольку мы заняли в разряде десятых одну единицу, то цифра, которая там располагалась, уменьшилась на одну единицу. Другими словами, в разряде десятых теперь не цифра 4, а цифра 3. Вычислим десятые части 3−3=0. Записываем ноль в десятой части нашего ответа:

Теперь вычитаем целые части 3−2=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,07. Значит значение выражения 3,46−2,39 равно 1,07

3,46−2,39=1,07

Пример 4 . Найти значение выражения 3−1,2

В этом примере из целого числа вычитается десятичная дробь. Запишем данное выражение столбиком так, чтобы целая часть десятичной дроби 1,23 оказалась под числом 3

Теперь сделаем количество цифр после запятой одинаковым. Для этого после числа 3 поставим запятую и допишем один ноль:

Теперь вычитаем десятые части: 0−2. От нуля не вычесть число 2. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда, 0 обращается в число 10. Теперь можно вычислить десятые части 10−2=8. Записываем восьмёрку в десятой части нашего ответа:

Теперь вычитаем целые части. Раньше в целой располагалось число 3, но мы заняли у него одну единицу. В результате оно обратилось в число 2. Поэтому из 2 вычитаем 1. 2−1=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,8. Значит значение выражения 3−1,2 равно 1,8

Умножение десятичных дробей

Умножение десятичных дробей это просто и даже увлекательно. Чтобы перемножить десятичные дроби, нужно перемножить их как обычные числа, не обращая внимания на запятые.

Получив ответ, необходимо отделить запятой целую часть от дробной. Чтобы сделать это, надо посчитать количество цифр после запятой в обеих дробях, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Пример 1. Найти значение выражения 2,5 × 1,5

Перемножим эти десятичные дроби как обычные числа, не обращая внимания на запятые. Чтобы не обращать внимания на запятые, можно на время представить, что они вообще отсутствуют:

Получили 375. В этом числе необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в дробях 2,5 и 1,5. В первой дроби после запятой одна цифра, во второй дроби тоже одна. Итого две цифры.

Возвращаемся к числу 375 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 3,75. Значит значение выражения 2,5 × 1,5 равно 3,75

2,5 × 1,5 = 3,75

Пример 2. Найти значение выражения 12,85 × 2,7

Перемножим эти десятичные дроби, не обращая внимания на запятые:

Получили 34695. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 12,85 и 2,7. В дроби 12,85 после запятой две цифры, в дроби 2,7 одна цифра — итого три цифры.

Возвращаемся к числу 34695 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую:

Получили ответ 34,695. Значит значение выражения 12,85 × 2,7 равно 34,695

12,85 × 2,7 = 34,695

Умножение десятичной дроби на обычное число

Иногда возникают ситуации, когда требуется умножить десятичную дробь на обычное число.

Чтобы перемножить десятичную дробь и обычное число, нужно перемножить их, не обращая внимания на запятую в десятичной дроби. Получив ответ, необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в десятичной дроби, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Например, умножим 2,54 на 2

Умножаем десятичную дробь 2,54 на обычное число 2, не обращая внимания на запятую:

Получили число 508. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,54. В дроби 2,54 после запятой две цифры.

Возвращаемся к числу 508 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 5,08. Значит значение выражения 2,54 × 2 равно 5,08

2,54 × 2 = 5,08

Умножение десятичных дробей на 10, 100, 1000

Умножение десятичных дробей на 10, 100 или 1000 выполняется таким же образом, как и умножение десятичных дробей на обычные числа. Нужно выполнить умножение, не обращая внимания на запятую в десятичной дроби, затем в ответе отделить целую часть от дробной, отсчитав справа столько же цифр, сколько было цифр после запятой в десятичной дроби.

Например, умножим 2,88 на 10

Умножим десятичную дробь 2,88 на 10, не обращая внимания на запятую в десятичной дроби:

Получили 2880. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,88. Видим, что в дроби 2,88 после запятой две цифры.

Возвращаемся к числу 2880 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 28,80. Отбросим последний ноль — получим 28,8. Значит значение выражения 2,88×10 равно 28,8

2,88 × 10 = 28,8

Есть и второй способ умножения десятичных дробей на 10, 100, 1000. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается вправо на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 2,88×10 этим способом. Не приводя никаких вычислений, сразу же смотрим на множитель 10. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 2,88 передвигаем запятую вправо на одну цифру, получим 28,8.

2,88 × 10 = 28,8

Попробуем умножить 2,88 на 100. Сразу же смотрим на множитель 100. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 2,88 передвигаем запятую вправо на две цифры, получаем 288

2,88 × 100 = 288

Попробуем умножить 2,88 на 1000. Сразу же смотрим на множитель 1000. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 2,88 передвигаем запятую вправо на три цифры. Третьей цифры там нет, поэтому мы дописываем ещё один ноль. В итоге получаем 2880.

2,88 × 1000 = 2880

Умножение десятичных дробей на 0,1 0,01 и 0,001

Умножение десятичных дробей на 0,1, 0,01 и 0,001 происходит таким же образом, как и умножение десятичной дроби на десятичную дробь. Необходимо перемножить дроби, как обычные числа, и в ответе поставить запятую, отсчитав столько цифр справа, сколько цифр после запятой в обеих дробях.

Например, умножим 3,25 на 0,1

Умножаем эти дроби, как обычные числа, не обращая внимания на запятые:

Получили 325. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 3,25 и 0,1. В дроби 3,25 после запятой две цифры, в дроби 0,1 одна цифра. Итого три цифры.

Возвращаемся к числу 325 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую. Отсчитав три цифры мы обнаруживаем, что цифры закончились. В этом случае нужно дописать один ноль и поставить запятую:

Получили ответ 0,325. Значит значение выражения 3,25 × 0,1 равно 0,325

3,25 × 0,1 = 0,325

Есть и второй способ умножения десятичных дробей на 0,1, 0,01 и 0,001. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается влево на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 3,25 × 0,1 этим способом. Не приводя никаких вычислений сразу же смотрим на множитель 0,1. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 3,25 передвигаем запятую влево на одну цифру. Передвинув запятую на одну цифру влево мы видим, что перед тройкой больше нет никаких цифр. В этом случае дописываем один ноль и ставим запятую. В результате получаем 0,325

3,25 × 0,1 = 0,325

Попробуем умножить 3,25 на 0,01. Сразу же смотрим на множитель 0,01. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 3,25 передвигаем запятую влево на две цифры, получаем 0,0325

3,25 × 0,01 = 0,0325

Попробуем умножить 3,25 на 0,001. Сразу же смотрим на множитель 0,001. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 3,25 передвигаем запятую влево на три цифры, получаем 0,00325

3,25 × 0,001 = 0,00325

Нельзя путать умножение десятичных дробей на 0,1, 0,001 и 0,001 с умножением на 10, 100, 1000. Типичная ошибка большинства людей.

При умножении на 10, 100, 1000 запятая переносится вправо на столько же цифр сколько нулей во множителе.

А при умножении на 0,1, 0,01 и 0,001 запятая переносится влево на столько же цифр сколько нулей во множителе.

Если на первых порах это сложно запомнить, можно пользоваться первым способом, в котором умножение выполняется как с обычными числами. В ответе нужно будет отделить целую часть от дробной, отсчитав справа столько же цифр, сколько цифр после запятой в обеих дробях.

Деление меньшего числа на большее. Продвинутый уровень.

В одном из предыдущих уроков мы сказали, что при делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе – делитель.

Например, чтобы разделить одно яблоко на двоих, нужно в числитель записать 1 (одно яблоко), а в знаменатель записать 2 (двое друзей). В результате получим дробь. Значит каждому другу достанется по яблока. Другими словами, по половине яблока. Дробь это ответ к задаче «как разделить одно яблоко на двоих»

Оказывается, можно решать эту задачу и дальше, если разделить 1 на 2. Ведь дробная черта в любой дроби означает деление, а значит и в дроби это деление разрешено. Но как? Мы ведь привыкли к тому, что делимое всегда больше делителя. А здесь наоборот, делимое меньше делителя.

Всё станет ясным, если вспомнить, что дробь означает дробление, деление, разделение. А значит и единица может быть раздроблена на сколько угодно частей, а не только на две части.

При разделении меньшего числа на большее получается десятичная дробь, в которой целая часть будет 0 (нулевой). Дробная часть же может быть любой.

Итак, разделим 1 на 2. Решим этот пример уголком:

Единицу на два просто так нацело не разделить. Если задать вопрос «сколько двоек в единице» , то ответом будет 0. Поэтому в частном записываем 0 и ставим запятую:

Теперь как обычно умножаем частное на делитель, чтобы вытащить остаток:

Настал момент, когда единицу можно дробить на две части. Для этого справа от полученной единички дописываем ещё один ноль:

Получили 10. Делим 10 на 2, получаем 5. Записываем пятёрку в дробной части нашего ответа:

Теперь вытаскиваем последний остаток, чтобы завершить вычисление. Умножаем 5 на 2, получаем 10

Получили ответ 0,5. Значит дробь равна 0,5

Половину яблока можно записать и с помощью десятичной дроби 0,5. Если сложить эти две половинки (0,5 и 0,5), мы опять получим изначальное одно целое яблоко:

Этот момент также можно понять, если представить, как 1 см делится на две части. Если 1 сантиметр разделить на 2 части, то получится 0,5 см

Пример 2. Найти значение выражения 4: 5

Сколько пятёрок в четвёрке? Нисколько. Записываем в частном 0 и ставим запятую:

Умножаем 0 на 5, получаем 0. Записываем ноль под четвёркой. Сразу же вычитаем этот ноль из делимого:

Теперь начнём дробить (делить) четвёрку на 5 частей. Для этого справа от 4 дописываем ноль и делим 40 на 5, получаем 8. Записываем восьмёрку в частном.

Завершаем пример, умножив 8 на 5, и получив 40:

Получили ответ 0,8. Значит значение выражения 4: 5 равно 0,8

Пример 3. Найти значение выражения 5: 125

Сколько чисел 125 в пятёрке? Нисколько. Записываем 0 в частном и ставим запятую:

Умножаем 0 на 5, получаем 0. Записываем 0 под пятёркой. Сразу же вычитаем из пятёрки 0

Теперь начнём дробить (делить) пятёрку на 125 частей. Для этого справа от этой пятёрки запишем ноль:

Делим 50 на 125. Сколько чисел 125 в числе 50? Нисколько. Значит в частном опять записываем 0

Умножаем 0 на 125, получаем 0. Записываем этот ноль под 50. Сразу же вычитаем 0 из 50

Теперь делим число 50 на 125 частей. Для этого справа от 50 запишем ещё один ноль:

Делим 500 на 125. Сколько чисел 125 в числе 500. В числе 500 четыре числа 125. Записываем четвёрку в частном:

Завершаем пример, умножив 4 на 125, и получив 500

Получили ответ 0,04. Значит значение выражения 5: 125 равно 0,04

Деление чисел без остатка

Итак, поставим в частном после единицы запятую, тем самым указывая, что деление целых частей закончилось и мы приступаем к дробной части:

Допишем ноль к остатку 4

Теперь делим 40 на 5, получаем 8. Записываем восьмёрку в частном:

40−40=0. Получили 0 в остатке. Значит деление на этом полностью завершено. При делении 9 на 5 получается десятичная дробь 1,8:

9: 5 = 1,8

Пример 2 . Разделить 84 на 5 без остатка

Сначала разделим 84 на 5 как обычно с остатком:

Получили в частном 16 и еще 4 в остатке. Теперь разделим этот остаток на 5. Поставим в частном запятую, а к остатку 4 допишем 0

Теперь делим 40 на 5, получаем 8. Записываем восьмерку в частном после запятой:

и завершаем пример, проверив есть ли еще остаток:

Деление десятичной дроби на обычное число

Десятичная дробь, как мы знаем состоит из целой и дробной части. При делении десятичной дроби на обычное число в первую очередь нужно:

  • разделить целую часть десятичной дроби на это число;
  • после того, как целая часть будет разделена, нужно в частном сразу же поставить запятую и продолжить вычисление, как в обычном делении.

Например, разделим 4,8 на 2

Запишем этот пример уголком:

Теперь разделим целую часть на 2. Четыре разделить на два будет два. Записываем двойку в частном и сразу же ставим запятую:

Теперь умножаем частное на делитель и смотрим есть ли остаток от деления:

4−4=0. Остаток равен нулю. Ноль пока не записываем, поскольку решение не завершено. Далее продолжаем вычислять, как в обычном делении. Сносим 8 и делим её на 2

8: 2 = 4. Записываем четвёрку в частном и сразу умножаем её на делитель:

Получили ответ 2,4. Значение выражения 4,8: 2 равно 2,4

Пример 2. Найти значение выражения 8,43: 3

Делим 8 на 3, получаем 2. Сразу же ставим запятую после двойки:

Теперь умножаем частное на делитель 2 × 3 = 6. Записываем шестёрку под восьмёркой и находим остаток:

Делим 24 на 3, получаем 8. Записываем восьмёрку в частном. Сразу же умножаем её на делитель, чтобы найти остаток от деления:

24−24=0. Остаток равен нулю. Ноль пока не записываем. Сносим последнюю тройку из делимого и делим на 3, получим 1. Сразу же умножаем 1 на 3, чтобы завершить этот пример:

Получили ответ 2,81. Значит значение выражения 8,43: 3 равно 2,81

Деление десятичной дроби на десятичную дробь

Чтобы разделить десятичную дробь на десятичную дробь, надо в делимом и в делителе перенести запятую вправо на столько же цифр, сколько их после запятой в делителе, и затем выполнить деление на обычное число.

Например, разделим 5,95 на 1,7

Запишем уголком данное выражение

Теперь в делимом и в делителе перенесём запятую вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит мы должны в делимом и в делителе перенести запятую вправо на одну цифру. Переносим:

После перенесения запятой вправо на одну цифру десятичная дробь 5,95 обратилась в дробь 59,5. А десятичная дробь 1,7 после перенесения запятой вправо на одну цифру обратилась в обычное число 17. А как делить десятичную дробь на обычное число мы уже знаем. Дальнейшее вычисление не составляет особого труда:

Запятая переносится вправо с целью облегчить деление. Это допускается по причине того, что при умножении или делении делимого и делителя на одно и то же число, частное не меняется. Что это значит?

Это одна из интересных особенностей деления. Его называют свойством частного. Рассмотрим выражение 9: 3 = 3. Если в этом выражении делимое и делитель умножить или разделить на одно и то же число, то частное 3 не изменится.

Давайте умножим делимое и делитель на 2, и посмотрим, что из этого получится:

(9 × 2 ) : (3 × 2 ) = 18: 6 = 3

Как видно из примера, частное не поменялось.

Тоже самое происходит, когда мы переносим запятую в делимом и в делителе. В предыдущем примере, где мы делили 5,91 на 1,7 мы перенесли в делимом и делителе запятую на одну цифру вправо. После переноса запятой, дробь 5,91 преобразовалась в дробь 59,1 а дробь 1,7 преобразовалась в обычное число 17.

На самом деле внутри этого процесса происходило умножение на 10. Вот как это выглядело:

5,91 × 10 = 59,1

Поэтому от количества цифр после запятой в делителе зависит то, на что будет умножено делимое и делитель. Другими словами, от количества цифр после запятой в делителе будет зависеть то, на сколько цифр в делимом и в делителе запятая будет перенесена вправо.

Деление десятичной дроби на 10, 100, 1000

Деление десятичной дроби на 10, 100, или 1000 осуществляется таким же образом, как и. Например, разделим 2,1 на 10. Решим этот пример уголком:

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится влево на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 2,1: 10. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 2,1 нужно перенести запятую влево на одну цифру. Переносим запятую влево на одну цифру и видим, что там больше не осталось цифр. В этом случае перед цифрой дописываем ещё один ноль. В итоге получаем 0,21

Попробуем разделить 2,1 на 100. В числе 100 два нуля. Значит в делимом 2,1 надо перенести запятую влево на две цифры:

2,1: 100 = 0,021

Попробуем разделить 2,1 на 1000. В числе 1000 три нуля. Значит в делимом 2,1 надо перенести запятую влево на три цифры:

2,1: 1000 = 0,0021

Деление десятичной дроби на 0,1, 0,01 и 0,001

Деление десятичной дроби на 0,1, 0,01, и 0,001 осуществляется таким же образом, как и. В делимом и в делителе надо перенести запятую вправо на столько цифр, сколько их после запятой в делителе.

Например, разделим 6,3 на 0,1. В первую очередь перенесём запятые в делимом и в делителе вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит переносим запятые в делимом и в делителе вправо на одну цифру.

После перенесения запятой вправо на одну цифру, десятичная дробь 6,3 превращается в обычное число 63, а десятичная дробь 0,1 после перенесения запятой вправо на одну цифру превращается в единицу. А разделить 63 на 1 очень просто:

Значит значение выражения 6,3: 0,1 равно 63

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится вправо на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 6,3: 0,1. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 6,3 нужно перенести запятую вправо на одну цифру. Переносим запятую вправо на одну цифру и получаем 63

Попробуем разделить 6,3 на 0,01. В делителе 0,01 два нуля. Значит в делимом 6,3 надо перенести запятую вправо на две цифры. Но в делимом после запятой только одна цифра. В этом случае в конце нужно дописать ещё один ноль. В результате получим 630

Попробуем разделить 6,3 на 0,001. В делителе 0,001 три нуля. Значит в делимом 6,3 надо перенести запятую вправо на три цифры:

6,3: 0,001 = 6300

Задания для самостоятельного решения

Понравился урок?Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Данный материал мы посвятим такой важной теме, как десятичные дроби. Сначала определимся с основными определениями, приведем примеры и остановимся на правилах десятичной записи, а также на том, что из себя представляют разряды десятичных дробей. Далее выделим основные виды: конечные и бесконечные, периодические и непериодические дроби. В финальной части мы покажем, как точки, соответствующие дробным числам, расположены на оси координат.

Yandex.RTB R-A-339285-1

Что такое десятичная запись дробных чисел

Так называемая десятичная запись дробных чисел может быть использована как для натуральных, так и для дробных чисел. Она выглядит как набор из двух и более цифр, между которыми есть запятая.

Десятичная запятая нужна для того, чтобы отделять целую часть от дробной. Как правило, последняя цифра десятичной дроби не бывает нулем, за исключением случаев, когда десятичная запятая стоит сразу после первого же нуля.

Какие можно привести примеры дробных чисел в десятичной записи? Это может быть 34, 21, 0, 35035044, 0, 0001, 11 231 552, 9 и др.

В некоторых учебниках можно встретить использование точки вместо запятой (5. 67, 6789. 1011 и др.) Это вариант считается равнозначным, но он более характерен для англоязычных источников.

Определение десятичных дробей

Основываясь на указанном выше понятии десятичной записи, мы можем сформулировать следующее определение десятичных дробей:

Определение 1

Десятичные дроби представляют собой дробные числа в десятичной записи.

Для чего нам нужна запись дробей в такой форме? Она дает нам некоторые преимущества перед обыкновенными, например, более компактную запись, особенно в тех случаях, когда в знаменателе стоят 1000, 100, 10 и др. или смешанное число. Например, вместо 6 10 мы можем указать 0, 6, вместо 25 10000 – 0, 0023, вместо 512 3 100 – 512, 03.

О том, как правильно представить в десятичном виде обыкновенные дроби с десятками, сотнями, тысячами в знаменателе, будет рассказано в рамках отдельного материала.

Как правильно читать десятичные дроби

Существуют некоторые правила чтения записей десятичных дробей. Так, те десятичные дроби, которым соответствуют их правильные обыкновенные эквиваленты, читаются почти так же, но с добавлением слов «ноль десятых» в начале. Так, запись 0, 14, которой соответствует 14 100, читается как «ноль целых четырнадцать сотых».

Если же десятичной дроби можно поставить в соответствие смешанное число, то она читается тем же образом, как и это число. Так, если у нас есть дробь 56, 002, которой соответствует 56 2 1000, мы читаем такую запись как «пятьдесят шесть целых две тысячных».

Значение цифры в записи десятичной дроби зависит от того, на каком месте она расположена (так же, как и в случае с натуральными числами). Так, в десятичной дроби 0, 7 семерка – это десятые доли, в 0, 0007 – десятитысячные, а в дроби 70 000, 345 она означает семь десятков тысяч целых единиц. Таким образом, в десятичных дробях тоже существует понятие разряда числа.

Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:

Разберем пример.

Пример 1

У нас есть десятичная дробь 43, 098. У нее в разряде десятков находится четверка, в разряде единиц тройка, в разряде десятых – ноль, сотых – 9, тысячных – 8.

Принято различать разряды десятичных дробей по старшинству. Если мы движемся по цифрам слева направо, то мы будем идти от старших разрядов к младшим. Получается, что сотни старше десятков, а миллионные доли младше, чем сотые. Если взять ту конечную десятичную дробь, которую мы приводили в качестве примера выше, то в ней старшим, или высшим будет разряд сотен, а младшим, или низшим – разряд 10 -тысячных.

Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.

Пример 2

Попробуем разложить дробь 56, 0455 по разрядам.

У нас получится:

56, 0455 = 50 + 6 + 0, 4 + 0, 005 + 0, 0005

Если мы вспомним свойства сложения, то сможем представить эту дробь и в других видах, например, как сумму 56 + 0, 0455, или 56, 0055 + 0, 4 и др.

Что такое конечные десятичные дроби

Все дроби, о которых мы говорили выше, являются конечными десятичными дробями. Это означает, что количество цифр, расположенное у них после запятой, является конечным. Выведем определение:

Определение 1

Конечные десятичные дроби представляют собой вид десятичных дробей, у которых после знака запятой стоит конечное число знаков.

Примерами таких дробей могут быть 0, 367, 3, 7, 55, 102567958, 231 032, 49 и др.

Любую из этих дробей можно перевести либо в смешанное число (если значение их дробной части отличается от нуля), либо в обыкновенную дробь (при нулевой целой части). Тому, как это делается, мы посвятили отдельный материал. Здесь просто укажем пару примеров: так, конечную десятичную дробь 5, 63 мы можем привести к виду 5 63 100, а 0, 2 соответствует 2 10 (или любая другая равная ей дробь, например, 4 20 или 1 5. )

Но обратный процесс, т.е. запись обыкновенной дроби в десятичном виде, может быть выполнен не всегда. Так, 5 13 нельзя заменить на равную дробь с знаменателем 100, 10 и др., значит, конечная десятичная дробь из нее не получится.

Основные виды бесконечных десятичных дробей: периодические и непериодические дроби

Мы указывали выше, что конечные дроби называются так потому, что после запятой у них стоит конечное число цифр. Однако оно вполне может быть и бесконечным, и в этом случае сами дроби также будут называться бесконечными.

Определение 2

Бесконечными десятичными дробями называются такие, у которых после запятой стоит бесконечное количество цифр.

Очевидно, что полностью такие числа записаны быть просто не могут, поэтому мы указываем лишь часть из них и дальше ставим многоточие. Это знак говорит о бесконечном продолжении последовательности знаков после запятой. Примерами бесконечных десятичных дробей могут быть 0, 143346732 …, 3, 1415989032 …, 153, 0245005 …, 2, 66666666666 …, 69, 748768152 …. и т.д.

В «хвосте» такой дроби могут стоять не только случайные на первый взгляд последовательности цифр, но постоянное повторение одного и того же знака или группы знаков. Дроби с чередованием после десятичной запятой называются периодическими.

Определение 3

Периодическими десятичными дробями называются такие бесконечные десятичные дроби, у которых после запятой повторяется одна цифра или группа из нескольких цифр. Повторяющаяся часть называется периодом дроби.

К примеру, для дроби 3, 444444 …. периодом будет цифра 4, а для 76, 134134134134 … – группа 134.

Какое же минимальное количество знаков допустимо оставить в записи периодической дроби? Для периодических дробей достаточно будет записать весь период один раз в круглых скобках. Так, дробь 3, 444444 …. правильно будет записать как 3, (4), а 76, 134134134134 … – как 76, (134).

В целом записи с несколькими периодами в скобках будут иметь точно такой же смысл: к примеру, периодическая дробь 0, 677777 – это то же самое, что 0, 6 (7) и 0, 6 (77) и т.д. Также допустимы записи вида 0, 67777 (7), 0, 67 (7777) и др.

Во избежание ошибок введем однообразие обозначений. Условимся записывать только один период (максимально короткую последовательность цифр), который стоит ближе всего к десятичной запятой, и заключать его в круглые скобки.

То есть для указанной выше дроби основной будем считать запись 0, 6 (7), а, например, в случае с дробью 8, 9134343434 будем писать 8, 91 (34).

Если знаменатель обыкновенной дроби содержит простые множители, не равные 5 и 2, то при переводе в десятичную запись из них получатся бесконечные дроби.

В принципе, любую конечную дробь мы можем записать в виде периодической. Для этого нам просто нужно добавить справа бесконечно много нулей. Как это выглядит в записи? Допустим, у нас есть конечная дробь 45, 32. В периодическом виде она будет выглядеть как 45, 32 (0). Это действие возможно потому, что добавление нулей справа в любую десятичную дробь дает нам в результате равную ей дробь.

Отдельно следует остановиться на периодических дробях с периодом 9, например, 4, 89 (9), 31, 6 (9). Они являются альтернативной записью схожих дробей с периодом 0, поэтому их часто заменяют при письме именно дробями с нулевым периодом. При этом к значению следующего разряда добавляют единицу, а в круглых скобках указывают (0). Равенство получившихся чисел легко проверить, представив их в виде обыкновенных дробей.

К примеру, дробь 8, 31 (9) можно заменить на соответствующую ей дробь 8, 32 (0). Или 4, (9) = 5, (0) = 5.

Бесконечные десятичные периодические дроби относятся к рациональным числам. Иначе говоря, любую периодическую дробь можно представить в виде обыкновенной, и наоборот.

Существуют и дроби, у которых после запятой бесконечно повторяющаяся последовательность отсутствует. В таком случае их называют непериодическими дробями.

Определение 4

К непериодическим десятичным дробям относятся те бесконечные десятичные дроби, в которых после запятой не содержится периода, т.е. повторяющейся группы цифр.

Иногда непериодические дроби выглядят очень похожими на периодические. Например, 9, 03003000300003 … на первый взгляд кажется имеющей период, однако подробный анализ знаков после запятой подтверждает, что это все же непериодическая дробь. С такими числами надо быть очень внимательным.

Непериодические дроби относятся к иррациональным числам. В обыкновенные дроби их не переводят.

Основные действия с десятичными дробями

С десятичными дробями можно производить следующие действия: сравнение, вычитание, сложение, деление и умножение. Разберем каждое из них отдельно.

Сравнение десятичных дробей может быть сведено к сравнению обыкновенных дробей, которые соответствуют исходным десятичным. Но бесконечные непериодические дроби свести к такому виду нельзя, а перевод десятичных дробей в обыкновенные зачастую является трудоемкой задачей. Как же быстро произвести действие сравнения, если нам нужно сделать это по ходу решения задачи? Удобно сравнивать десятичные дроби по разрядам таким же образом, как мы сравниваем натуральные числа. Этому методу мы посвятим отдельную статью.

Чтобы складывать одни десятичные дроби с другими, удобно использовать метод сложения столбиком, как для натуральных чисел. Чтобы складывать периодические десятичные дроби, необходимо предварительно заменить их обыкновенными и считать по стандартной схеме. Если же по условиям задачи нам надо сложить бесконечные непериодические дроби, то нужно перед этим округлить их до некоторого разряда, а потом уже складывать. Чем меньше разряд, до которого мы округляем, тем выше будет точность вычисления. Для вычитания, умножения и деления бесконечных дробей предварительное округление также необходимо.

Нахождение разности десятичных дробей обратно действию сложения. По сути, с помощью вычитания мы можем найти такое число, сумма которого с вычитаемой дробью даст нам уменьшаемую. Подробнее об этом расскажем в рамках отдельного материала.

Умножение десятичных дробей производится так же, как и для натуральных чисел. Для этого тоже подходит метод вычисления столбиком. Это действие с периодическими дробями мы опять же сводим к умножению обыкновенных дробей по уже изученным правилам. Бесконечные дроби, как мы помним, надо округлить перед подсчетами.

Процесс деления десятичных дробей является обратным процессу умножения. При решении задач мы также пользуемся подсчетами в столбик.

Можно установить точное соответствие между конечной десятичной дробью и точкой на оси координат. Выясним, как отметить точку на оси, которая будет точно соответствовать необходимой десятичной дроби.

Мы уже изучали, как построить точки, соответствующие обыкновенным дробям, а ведь десятичные дроби можно привести к такому виду. Например, обыкновенная дробь 14 10 – это то же самое, что и 1, 4, поэтому соответствующая ей точка будет удалена от начала отсчета в положительном направлении ровно на такое же расстояние:

Можно обойтись без замены десятичной дроби на обыкновенную, а взять на основу метод разложения по разрядам. Так, если нам надо отметить точку, координата которой будет равна 15, 4008, то мы предварительно представим это число в виде суммы 15 + 0, 4 +, 0008. Для начала отложим от начала отсчета 15 целых единичных отрезков в положительном направлении, потом 4 десятых доли одного отрезка, а потом 8 десятитысячных долей одного отрезка. В итоге мы получим точку координат, которой соответствует дробь 15, 4008.

Для бесконечной десятичной дроби лучше пользоваться именно этим способом, поскольку он позволяет приблизиться к нужной точке сколь угодно близко. В некоторых случаях можно построить и точное соответствие бесконечной дроби на оси координат: так, 2 = 1, 41421. . . , и с этой дробью может быть соотнесена точка на координатном луче, удаленная от 0 на длину диагонали квадрата, сторона которого будет равна одному единичному отрезку.

Если мы находим не точку на оси, а десятичную дробь, соответствующую ей, то это действие называется десятичным измерением отрезка. Посмотрим, как правильно это сделать.

Допустим, нам нужно попасть от нуля в заданную точку на оси координат (или максимально приблизиться в случае с бесконечной дробью). Для этого мы постепенно откладываем единичные отрезки от начала координат, пока не попадем в нужную точку. После целых отрезков при необходимости отмеряем десятые, сотые и более мелкие доли, чтобы соответствие было максимально точным. В итоге мы получили десятичную дробь, которая соответствует заданной точке на оси координат.

Выше мы приводили рисунок с точкой M. Посмотрите на него еще раз: чтобы попасть в эту точку, нужно отмерить от нуля один единичный отрезок и четыре десятых доли от его, поскольку этой точке соответствует десятичная дробь 1, 4.

Если мы не можем попасть в точку в процессе десятичного измерения, то значит, что ей соответствует бесконечная десятичная дробь.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

дробного числа.

Десятичная запись дробного числа представляет собой набор двух и более цифр от $0$ до $9$, между которыми находится так называемая \textit{десятичная запятая}.

Пример 1

Например, $35,02$; $100,7$; $123 \ 456,5$; $54,89$.

Крайняя левая цифра в десятичной записи числа не может быть нулем, исключением является только случай, когда десятичная запятая стоит сразу после первой цифры $0$.

Пример 2

Например, $0,357$; $0,064$.

Часто десятичную запятую заменяют десятичной точкой. Например, $35.02$; $100.7$; $123 \ 456.5$; $54.89$.

Определение десятичной дроби

Определение 1

Десятичные дроби -- это дробные числа, которые представлены в десятичной записи.

Например, $121,05$; $67,9$; $345,6700$.

Десятичные дроби используются для более компактной записи правильных обыкновенных дробей, знаменателями которых являются числа $10$, $100$, $1 \ 000$ и т.д. и смешанные числа, знаменателями дробной части которых являются числа $10$, $100$, $1 \ 000$ и т.д.

Например, обыкновенную дробь $\frac{8}{10}$ можно записать в виде десятичной дроби $0,8$, а смешанное число $405\frac{8}{100}$ -- в виде десятичной дроби $405,08$.

Чтение десятичных дробей

Десятичные дроби, которые соответствуют правильным обыкновенным дробям, читаются также как и обыкновенные дроби, только впереди добавляется фраза «ноль целых». Например, обыкновенной дроби $\frac{25}{100}$ (читается «двадцать пять сотых») отвечает десятичная дробь $0,25$ (читается «нуль целых двадцать пять сотых»).

Десятичные дроби, которые соответствуют смешанным числам, читаются также как и смешанные числа. Например, смешанному числу $43\frac{15}{1000}$ соответствует десятичная дробь $43,015$ (читается «сорок три целых пятнадцать тысячных»).

Разряды в десятичных дробях

В записи десятичной дроби значение каждой цифры зависит от ее позиции. Т.е. в десятичных дробях также имеет место понятие разряда .

Разряды в десятичных дробях до десятичной запятой называются так же, как и разряды в натуральных числах. Разряды в десятичных дробях после запятой вынесены в таблицу:

Рисунок 1.

Пример 3

Например, в десятичной дроби $56,328$ цифра $5$ стоит в разряде десятков, $6$ - в разряде единиц, $3$ - в разряде десятых, $2$ - в разряде сотых, $8$ -- в разряде тысячных.

Разряды в десятичных дробях различают по старшинству. При чтении десятичной дроби движутся слева направо -- от старшего разряда к младшему .

Пример 4

Например, в десятичной дроби $56,328$ старшим (высшим) разрядом является разряд десятков, а младшим (низшим) -- разряд тысячных.

Десятичную дробь можно разложить по разрядам аналогично разложению по разрядам натурального числа.

Пример 5

Например, разложим по разрядам десятичную дробь $37,851$:

$37,851=30+7+0,8+0,05+0,001$

Конечные десятичные дроби

Определение 2

Конечными десятичными дробями называют десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Например, $0,138$; $5,34$; $56,123456$; $350 972,54$.

Любую конечную десятичную дробь можно перевести в обыкновенную дробь или смешанное число.

Пример 6

Например, конечной десятичной дроби $7,39$ отвечает дробное число $7\frac{39}{100}$, а конечной десятичной дроби $0,5$ соответствует правильная обыкновенная дробь $\frac{5}{10}$ (или любая дробь, которая равна ей, например, $\frac{1}{2}$ или $\frac{10}{20}$.

Перевод обыкновенной дроби в десятичную дробь

Перевод обыкновенных дробей со знаменателями $10, 100, \dots$ в десятичные дроби

Перед переводом некоторых правильных обыкновенных дробей в десятичные их нужно предварительно «подготовить». Результатом такой подготовки должно быть одинаковое количество цифр в числителе и количество нулей в знаменателе.

Суть «предварительной подготовки» правильных обыкновенных дробей к переводу в десятичные дроби -- дописывание слева в числителе такого числа нулей, чтобы общее количество цифр стало равно числу нулей в знаменателе.

Пример 7

Например, подготовим обыкновенную дробь $\frac{43}{1000}$ к переводу в десятичную и получим $\frac{043}{1000}$. А обыкновенная дробь $\frac{83}{100}$ в подготовке не нуждается.

Сформулируем правило перевода правильной обыкновенной дроби со знаменателем $10$, или $100$, или $1 \ 000$, $\dots$ в десятичную дробь :

    записать $0$;

    после него поставить десятичную запятую;

    записать число из числителя (вместе с дописанными нулями после подготовки, если она была нужна).

Пример 8

Перевести правильную обыкновенную дробь $\frac{23}{100}$ в десятичную.

Решение.

В знаменателе стоит число $100$, которое содержит $2$ два нуля. В числителе стоит число $23$, в записи которого $2$.цифры. значит, подготовку для этой дроби к переводу в десятичную проводить не нужно.

Запишем $0$, поставим десятичную запятую и запишем число $23$ из числителя. Получим десятичную дробь $0,23$.

Ответ : $0,23$.

Пример 9

Записать правильную дробь $\frac{351}{100000}$ в виде десятичной дроби.

Решение.

В числителе данной дроби $3$ цифры, а число нулей в знаменателе -- $5$, поэтому данную обыкновенную дробь нужно подготовить к переводу в десятичную. Для этого необходимо дописать $5-3=2$ нуля слева в числителе: $\frac{00351}{100000}$.

Теперь можем составить нужную десятичную дробь. Для этого запишем $0$, затем поставим запятую и запишем число из числителя. Получим десятичную дробь $0,00351$.

Ответ : $0,00351$.

Сформулируем правило перевода неправильных обыкновенных дробей со знаменателями $10$, $100$, $\dots$ в десятичные дроби :

    записать число из числителя;

    отделить десятичной запятой столько цифр справа, сколько нулей в знаменателе исходной дроби.

Пример 10

Перевести неправильную обыкновенную дробь $\frac{12756}{100}$ в десятичную дробь.

Решение.

Запишем число из числителя $12756$, затем отделим десятичной запятой $2$ цифры справа, т.к. в знаменателе исходной дроби $2$ нуля. Получим десятичную дробь $127,56$.

Добавить комментарий