Благоустройство и ремонт
838 0

Современные технологии в области обслуживания систем вентиляции. Технологическая вентиляция Новые технологии вентиляция

Пусконаладка и сервис систем вентиляции и кондиционирования со смартфона

Пусконаладка является финальной и крайне важной стадией работ перед сдачей инженерных систем заказчику. В объективном контроле качества проведённых работ заинтересованы как проектировщики инженерных систем, так и монтажники, которым необходимо подтвердить правильность монтажа и расчётных проектных характеристик этих систем. При проведении пусконаладочных работ особое внимание следует уделить выбору приборов, которые позволят не только получить точные данные измерений, но и обеспечат при этом удобство проведения замеров с последующим документированием полученных результатов.

Сегодня, в условиях повышенной требовательности заказчиков и растущей конкуренции, наличие точных и удобных инструментов для работы с инженерными системами - неотъемлемое условие. Современный мир уже неразрывно взаимодействует с «умной» техникой, позволяющей удобно сопоставлять, протоколировать и передавать по сети Интернет данные измерений, повышать эффективность и обеспечивать удобство в работе. В данном обзоре мы ознакомим читателя с последними технологиями в области измерений, которые «закрывают» вопросы, часто возникающие при пусконаладке и обслуживании систем кондиционирования и вентиляции.

В процессе пусконаладки системы вентиляции перед сервисным инженером часто возникает задача провести замеры скорости, объёмного расхода воздуха и его температуры в вентиляционных каналах, а также произвести регулировку воздушного потока до необходимых проектных параметров. В этой ситуации возникают неудобства, связанные с тем, что место замера и точки регулировки воздушного потока, такие как ирисовые клапаны, дроссель-заслонки и шиберы, находятся на значительном удалении друг от друга. В некоторых случаях это расстояние может достигать 20 м. В связи с этим проведение замеров и одновременная регулировка воздушного потока в воздуховоде для одного технического специалиста представляется невыполнимой задачей при условии использования стандартных инструментов.

Благодаря новым технологиям стало возможным одновременное осуществление многих рабочих процессов. В измерительном оборудовании переломным моментом стало использование беспроводных модулей при разработке инструментов. Такие нововведения, как дистанционное управление приборами и беспроводная передача данных для формирования отчётов, открывают перед техническими специалистами целый ряд новых возможностей и делают работу значительно проще. Яркий пример оборудования с использованием последних технологий в решении задач пусконаладки и диагностики - смарт-зонды testo (от англ. SmartProbes). Всего в линейку входят восемь приборов: testo 405i, testo 410i, testo 510i, testo 115i, testo 549i, testo 610i, testo 805i и testo 905i.

В вышеописанной ситуации на помощь придёт смарт-зонд анемометр с обогреваемой струной testo 405i, так как он позволяет измерять скорость потока воздуха, температуру и объёмный расход воздуха. Измеренные значения передаются по беспроводному каналу Bluetooth в специальное мобильное приложение, устанавливаемое на смартфоне или планшете. Благодаря графическому экрану мобильного устройства и интуитивно понятному управлению просматривать данные измерений и использовать многочисленные функции становится гораздо удобнее. В итоге один сервисный инженер получает возможность измерять в конкретной точке скорость потока, объёмный расход и температуры воздуха, без труда задавать геометрию и размеры поперечного сечения воздуховодов для определения объёмного расхода и параллельно проводить регулировку скорости потока воздуха до необходимых значений. Кроме того, смарт-зонд анемометр с обогреваемой струной даёт ощутимое удобство при работе в воздуховодах благодаря телескопической трубке зонда с максимальной длиной 400 мм.

При поведении пусконаладки систем вентиляции в больших зданиях часто возникает задача балансировки объёмного расхода на различных приточных и вытяжных вентиляционных решётках. Помимо этого, необходимо произвести замеры кратности воздухообмена по сумме из нескольких решёток, находящихся в одном помещении.

С решением всех этих задач справится смарт-зонд анемометр с крыльчаткой, с помощью которого можно измерять скорости и температуры воздуха на вентиляционных решётках, а также рассчитать объёмный расход воздуха в режиме реального времени. Данные измерений передаются по Bluetooth на мобильное приложение, установленное в планшете или смартфоне. Мобильное приложение благодаря введённым размерам вентиляционной решётки рассчитывает объёмный расход воздуха и отображает его значения параллельно с измеренными данными по скорости и температуры на экране смартфона/планшета. Мобильное приложение позволяет быстро провести расчёт суммарного расхода объёмного расхода на разных решётках в одном помещении для удобного осуществления балансировки вентиляционной системы.

В системы вентиляции современных зданий устанавливаются фильтры для очистки от примесей и загрязнений в воздухе. Перед сервисными инженерами стоит задача по определению остаточного ресурса воздушных фильтров. Эта задача может быть решена с помощью смарт-зонда манометра дифференциального давления testo 510i.

Манометром проверяется перепад давления в вентиляционном канале до фильтра и после. Измеренные значения передаются по беспроводному каналу Bluetooth в мобильное приложение, установленное на смартфоне или планшете. На основании измеренных значений определяется степень загрязнённости фильтров в соответствии с рекомендациями производителя фильтра. С помощью смарт-зонда манометра дифференциального давления и подсоединённой к нему трубки Пито можно проводить измерения потока и объёмного расхода в воздуховодах с высокой скоростью (от 2 до 60 м/с) воздуха, в аспирационных системах и в каналах для систем осушения, где температура воздуха выше 70 °C.

Сервисные инженеры постоянно сталкиваются с проблемами, связанными с проверкой работоспособности разветвлённых систем кондиционирования воздуха. С решением этих задач легко справится комплект смарт-зондов для холодильных систем. Комплект состоит из двух смарт-зондов манометров высокого давления до 60 бар, двух смарт-зондов термометров для труб (зажимов) диаметром от 6 до 35 мм и компактного кейса размерами 250 X 180 X 70 мм для их переноски и хранения. Во всех смарт-зондах имеется встроенный Bluetooth модуль с низким энергопотреблением, который обеспечивает соединение с мобильным устройством на расстоянии до 20 м. Специальное приложение, созданное для смартфонов и планшетов, способно одновременно транслировать данные измерений с четырёх смарт-зондов комплекта для холодильных систем.

Измерения со смарт-зондов поступают на мобильное устройство с частотой раз в секунду и могут отображаться в виде графика или таблицы. В памяти приложения заложено 60 наиболее распространённых хладагентов. Список может легко пополняться новыми хладагентами по мере их появления.

Для проверки работоспособности систем кондиционирования нужно подключить смарт-зонды манометры и термометры на трубы высокого и низкого давления системы кондиционирования. Автоматический расчёт важнейших параметров «перегрева пара» и «переохлаждения жидкости» происходит на основе данных о поверхностной температуре, получаемых от подключаемых термометров для труб, и от измеряемых значений высокого и низкого давления, а также на основе технических параметров хладагента, имеющихся в памяти приложения. С помощью полученных данных холодильного цикла можно провести диагностику работоспособности системы в целом и даже с высокой долей точности определить неисправный компонент.

Мобильное приложение Testo Smart Probes, используемое для смарт-зондов, является бесплатным. Его можно самостоятельно установить на мобильные устройства, работающие на базе Android из Google PlayMarket, и из AppStore - для мобильных устройств, работающих на базе iOS. Для обеспечения коммуникации на мобильном устройстве должен быть установлен модуль Bluetooth 4.0 (LowEnergy) с версиями операционных систем не старше Android 4.3 и iOS 8.3.

С помощью приложения можно получать данные с любого типа смарт-зондов на расстоянии до 20 м. Приложение способно поддерживать одновременное подключение до шести любых смарт-зондов testo, проводить долгосрочные измерения, регистрировать данные измерений в виде графика или табличных значений, сохранять итоговый отчёт измерений в форматах Excel и PDF, прикреплять к нему фотографии места измерения и логотип компании и отправлять его по e-mail. Теперь, благодаря использованию беспроводной связи между приборами и мобильным приложением, появляется дополнительное удобство при проведении измерений, так как можно получать данные измерений, находясь достаточно далеко от места замера и при этом не используя дополнительных шлангов и проводов.

В современной проектной практике специалистам все чаще приходится сталкиваться с такими ситуациями, когда предлагаемые рынком технические решения значительно обгоняют существующие нормы. Для проектировщика такая ситуация может закончиться сложностями при согласовании проекта. Для производителя же это куда больший вызов – несоответствие нормам даже очевидно выигрышного и выгодного решения может обернуться не только потерей рынка, но и стагнацией научно-технических исследований, которые являются преимущественным инвестиционным направлением у передовых компаний.

Однако такой вызов можно принять, не испугавшись застарелых правил и выдвинув на рынок явно опережающие его разработки, а нормы изменить самостоятельно, заставляя прислушиваться к себе на основании профессиональной репутации компании. Конкретный пример — инициатива компании Flakt Woods, одним из продуктов которой являются осевые струйные вентиляторы для парковок Jet Trans Funs.

Jet Trans Fans

Традиционное решение для вентиляции подземных паркингов, реализованное у нас повсюду, – это коробчатые воздуховоды, обеспечивающие воздухообмен и дымоудаление, дымоприемники, противопожарные клапаны и др. В существующей нормативной практике предусмотрены приточные и вытяжные установки со своими воздуховодами. До недавнего времени проектировщики в Москве и вовсе руководствовались региональными нормами МГСН 5.01 «Стоянки легковых автомобилей», которые предписывали разделять систему вентиляции на нижнюю и верхнюю зоны.

Такое решение крайне неэффективно, так как приводит и к излишним затратам материалов, трудоемкому и долгому монтажу, удорожанию за счет использования множества вентиляторов. Кроме того, для современного девелопмента имеет значение и снижение габарита парковки по высоте за счет прокладывания воздуховодов, что отрицательно сказывается на общем эффективном использовании квадратных метров.

Решает эти проблемы новое решение для систем вентиляции парковок от Flakt Woods. Эта компания – известный профессионал в области систем кондиционирования и вентиляции. Даже тоннель под проливом Ла-Манш вентилируется всего двумя вентиляторами, и те оба от Flakt Woods. Правда, проблемы удаления загазованного воздуха там не стоит. На всем своем протяжении 50-километровый тоннель – железнодорожный, и автомобили двигаются по нему на специальных платформах.

В других случаях вопрос удаления выхлопных газов остро встает перед всяким проектировщиком, который сталкивается с встроенными паркингами. В основе системы реактивной тяги — струйные вентиляторы, которые исключают прокладывание воздуховодов и работают и в обычном режиме, и в режиме проветривания для локального дымоудаления. Являясь лишь частью системы вентиляции парковки, они, тем не менее, обеспечивают те характеристики, которые предъявляются компанией Flakt Woods как свои основные преимущества. Это высокая производительность всей системы и низкая стоимость монтажа, низкие производственные затраты и оптимизация пространства автостоянки.

Весь же комплекс включает и набор датчиков CO2, и необходимые программные и аппаратные решения, интегрирующие сигналы с датчиков и управляющие работой каждого вентилятора в отдельности. Благодаря интегрированному решению, система на основе струйных вентиляторов может самостоятельно определять количество автомобилей на парковке (по датчикам CO2) и регулировать загрузки и тягу конкретных вентиляторов, снижая потребление энергии системой и увеличивая ресурс механизмов.

Те же действия, но уже в экстренном порядке, соответственно увеличивая обороты вентиляторов, система предпримет и в случае пожара, локализуя источник, освобождая помещение от дыма и предоставляя доступ пожарным подразделениям к аварийному автомобилю.

Однако в случаях со сложными современными техническими решениями проектировщик, как правило, сталкивается и с необходимостью дополнительных расчетов. Flakt woods самостоятельно выполняет эту расчетную часть, опираясь на новейшие исследования и точное знание особенностей работы своих вентиляторов.

Стоит также отметить, что тяговые струйные вентиляторы Flakt Woods могут работать в полностью реверсивном режиме – это значит, что вентилятор обеспечивает 100% тяги в обоих направлениях. Это существенно сокращает время, необходимое для выведения воздуха из автостоянки. Для сравнения можно привести данные по вентиляторам с обратным вектором тяги, у которых оба направления несимметричны, в этом случае эффективность обратной тяги из-за дизайна лопастей вентилятора хуже прямой на 40%.

Охлаждающие балки

Однако современные технические решения для вентиляции, в которых реализованы прорывные энергоэффективные технологии, не исчерпываются системами для автостоянок. В коммерческом сегменте все большее распространение находят охлаждающие балки – устройства для догрева или охлаждения воздуха с помощью воды и с функцией воздухораспределения.

Спрос на охлаждающие балки увеличивается в связи с возрастающими требованиями пользователей к качеству воздуха в помещениях, температуре, влажности, содержанию кислорода и к уровню шума от вентустановок. В то же время возрастают требования и к энергопотреблению оборудования, к экологическим последствиям работы систем, к затратам на эксплуатацию и к гибкости системы по отношению к меняющимся условиям.

Для бизнес-центров, общественных зданий и гостиниц решение вентиляции на основе охлаждающих балок является оптимальным. В таких помещениях часто меняется число людей в одной и той же комнате, быстро возрастает и быстро падает температура воздуха и концентрация СО2. Соответственно, работа системы вентиляции в постоянном режиме для проветривания всех помещений привела бы к слишком большому расходу энергии.

Охлаждающие балки Flakt Woods имеют регулируемые форсунки, благодаря которым через балку можно подавать воздух в нужном количестве для конкретной ситуации. Гибко настраиваемые форсунки могут создавать в помещении необходимый воздушный поток, формируя различные зоны комфорта в зависимости от размещения людей или оборудования в помещении. Кроме того, система управления энергопотреблением балки с электроприводом позволяет управлять расходом воздуха на основании датчиков CO2 или датчиков присутствия.

Twin wheel

Однако основная проблема охлаждающих балок — это конденсат. В случае с охлаждающими балками при проектировании систем вентиляции приходится решать проблему дополнительного осушения воздуха, чтобы предотвратить течь. Инженеры Flakt Woods разработали более оптимальное решение, которое получило название Twin Wheel. По своему действию система похожа на роторный рекуператор, который обеспечивает не только передачу тепла, но и влажности. Система включает в себя два ротора и охлаждающий теплообменник, а также необходимую автоматику и датчики, управляющие работой роторов в соответствие с заданными значениями точки росы.

В первичном контуре такой вентустановки абсорбционный ротор полной утилизации снижает температуру наружного воздуха и обеспечивает передачу влаги от входящего воздуха к удаляемому. После прохождения через первичный ротор температура воздуха снижется в охлаждающем теплообменнике, там же происходит конденсация влаги. Наконец осушенный и охлажденный воздух поступает на обыкновенный ротор, где происходит утилизация тепла удаляемого воздуха и подогрев приточного.

Благодаря использованию системы влажность приточного воздуха не превышает допустимых уровней и исключается риск конденсации. С использованием системы Twin Weel мощность охлаждающего теплообменника можно снизить на 25%, что, конечно, сказывается на общем энергопотреблении всей вентустановки.

При этом все возможности и преимущества охлаждающих балок не проявляются в полной мере, если речь идет о больших бизнес-центрах или отелях с множеством помещений разного назначения и быстро меняющейся загрузке. В этом случае важно обеспечить управление температурой и давлением воздуха во всей системе. Кроме того, оптимальная комбинация водяного и воздушного оборудования позволит снизить затраты энергии системы и продлить ресурс оборудования.

Для таких ситуаций решения относительно подачи воздуха в те или иные помещения лучше принимать централизованно, последовательно анализируя данные с датчиков в разных помещениях и запросы пользователей на индивидуальные условиях нагрева или охлаждения воздуха. Решение Flakt Woods для комплексной увязки всех компонентов вентиляционной системы называется Ipsum.

Это комплексная система автоматизации, которая позволяет оптимально настроить работу всех участков вентиляции, обеспечить снижение энергопотребления и повышенный комфорт, а также предоставляет немалые удобства для эксплуатирующей организации по управлению, обслуживанию и ремонту системы вентиляции.

Одна из последних новаций в области систем вентиляции у Flakt Woods связана с приобретением американского лидера в области рекуперации тепла — компании Semko. Наиболее известное техническое решение под этим брендом – это гигроскопичный ротор для рекуператоров воздуха. Благодаря специальному полимерному покрытию такой ротор поглощает влагу из воздуха, сводя таким образом к нулю традиционные недостатки роторных рекуператоров – малые возможности по рекуперации холода и перенос запахов. Гигроскопичный ротор поможет вентустановке эффективно работать в летний период, дополнительно охлаждая воздух за счет переноса влаги.

Эффективность циркуляции воздуха определяет качество микроклимата в помещении, от которого зависит уровень комфорта и общее самочувствие человека. Воздух внутри комнаты должен отвечать определенным нормам содержания кислорода и углекислого газа. Для достижения и поддержания оптимальных атмосферных параметров обустраивается вентиляционная система. Монтаж комплекса вентилирования требует профессионального подхода и особых знаний от исполнителя.

Принципы работы разных вентиляционных систем

Вентиляционная система - комплекс оборудования и мероприятий, обеспечивающих достаточную циркуляцию воздуха. Главная задача вентиляции - вывод из помещения «отработанного» и наполнение его потоком свежего воздуха. Каждую систему можно охарактеризовать по четырем базовым признакам: назначению, способу движения воздушных масс, конструктивным особенностям и сфере применения.

Естественная циркуляция воздуха

В многоквартирных домах преимущественно используется естественное вентилирование. Циркуляция воздуха осуществляется под воздействием перепадов давления и температур. Принцип функционирования природного воздухообмена часто реализуется и в частных домах.

Популярность естественной циркуляции обусловлена рядом достоинств:

  1. Простота организации. Для обустройства вентсистемы не требуется дорогостоящее оборудование. Воздухообмен осуществляется без участия человека.
  2. Энергонезависимость. Приток и отвод воздуха происходит без электроэнергии.
  3. Возможность повышения эффективности. При необходимости, сеть получиться доукомплектовать элементами принудительного вентилирования: приточного клапана или вытяжки.

Принципиальное устройство вентиляционной системы естественного типа представлено на схеме. Для функционирования комплекса требуются вытяжные и приточные каналы, обеспечивающие свободное перемещения воздуха.

Схема вентилирования:

  1. Свежий воздух (синие «потоки») поступают вовнутрь дома через окна или вентиляционные клапаны.
  2. Попадая в помещение, воздух нагревается от приборов отопления и вытесняет «отработанный» состав, насыщенный углекислым газом.
  3. Далее воздух (зеленые «потоки») перемещается через сквозные окошки или просветы под дверьми и движется в направлении вытяжных отдушин.
  4. За счет разниц температуры потоки (розового цвета) устремляются по вертикальным каналам и воздух выводится наружу.

Механический воздухообмен

Если производительности естественной циркуляции недостаточно, то необходим монтаж механической системы вентилирования. Для отвода и подвода воздушного потока используется специальное оборудование.

В комплексных системах поступающий воздух может подвергаться обработке: осушению, увлажнению, нагреву, охлаждению или очистке.

Системы принудительного действия обычно используются на производстве, в офисных и складских помещениях, где требуется высокомощная вентиляция. Комплекс потребляет много электричества.

Сравнительные преимущества механической вентиляции:

  • широкий радиус действия;
  • поддержание заданных параметров микроклимата независимо от скорости ветра и температуры воздуха на улице;
  • автоматизация управления системой.

Механический воздухообмен реализуем несколькими способами:

  • установка приточного или вытяжного устройства;
  • создание приточно-вытяжного комплекса;
  • общеобменные системы.

Наиболее рациональной считается приточно-вытяжной комплекс. Система имеет два независимых потока изгнания и подачи воздуха, соединенных вентканалами. Основные составляющие комплекса:

  • воздуховоды;
  • воздухораспределители - получают воздух извне;
  • автоматические системы - управление элементами сети, выполняющие контроль основных параметров;
  • фильтры приточного и вытяжного воздуха - предотвращают попадание мусора в воздуховод.

В систему могут входить: воздухонагреватели, увлажнители, рукоператоры и осушители. Конструктивно устройство выполняется в моноблочном или сборном виде.

Принцип работы вентиляционной системы:

  1. Приточный компрессор «затягивает» воздух.
  2. В рекуператоре воздух очищается, прогревается и подается далее по вентканалам.
  3. Вытяжной компрессор генерирует разряжение в воздуховоде, который подключен к заборной решетке. Осуществляется отток воздуха.

Системы воздухообмена специального назначения

Виды вентиляционных систем специального назначения:

  1. Аварийная установка. Дополнительная вентсистема обустраивается на предприятиях, где возможна утечка или сброс большого объема газообразного вещества. Задача комплекса - отвод воздушных потоков в сжатые сроки.
  2. Противодымная система. При задымленности в помещении автоматически срабатывает датчик, включается вентиляция - часть вредных веществ поступает в отводящие вентканалы. Параллельно поступает свежий воздух. Работа противодымной вентиляции увеличивает время на эвакуацию людей. Комплекс устанавливается в зданиях общественного назначения или там, где используются пожароопасные технологии.
  3. Местная - организуется как вытяжная или приточная вентиляционная система. Первый вариант актуален для кухонь, санузлов и ванных комнат. Приточные устройства обычно используются на производстве, например, обдув рабочего места.

Организация вентиляционной системы

Нормативы по обустройству воздухообмена

При планировании системы вентилирования надо исходить из требований санитарных правил и норм, выдвигаемых помещениям разного назначения. Нормы подачи свежего воздуха приведены из расчета на одного человека.

Базовые нормативы приведены в таблице.

В офисных помещениях основное внимание уделяется комнатам, где размещается персонал. Так, в кабинете достаточной считается замена воздуха в объеме 60 куб. м/час, в коридоре - 10 куб. м, в курилке и санузле - 70 и 100 куб.м соответственно.

При организации вентиляционной системы в квартире или частном секторе ориентируются на количество проживающих. По санитарным нормам воздухообмен должен составлять не менее 30 куб.м/час на одного человека. Если площадь жилья не превышает 20 кв.м, то за основу расчета берется площадь помещения. На один метр квадратный должно приходится 3 куб.м воздуха.

Планирование и расчет

Проект вентиляционной системы в частном доме необходимо разрабатывать на этапе строительства. В этом случае есть возможность сделать под вентиляционную камеру отдельное помещение, определить оптимальные места прокладки труб и создать под них декоративные ниши.

Расчет и планировку приточно-вытяжного комплекса лучше доверить профессионалам. Специалист составит техническое задание с учетом площади и количества помещений, расположения и назначения комнат, расстановки элементов, повышающих нагрузку на систему вентилирования (печи, санузлы и камины).

Важно! Проектирование требует взвешенного, серьезного подхода к определению мощности оборудования - это позволит организовать достаточный воздухообмен и в то же время не «гонять» воздух понапрасну.

Мощность системы зависимо от кратности обмена воздуха рассчитывается, так: L=N*Ln, где:

  • N - наибольшее количество человек в помещении;
  • Ln - часовое потребление воздуха человеком.

Средняя производительность комплекса для квартир составляет 100-500 кв.м/ч, для частных домов и коттеджей - 1000-2500 кв.м/ч, для административных и производственных зданий - до 15000 кв.м/ч.

Исходя из расчетной мощности, подбираются остальные характеристики вентиляционных систем: протяженность и сечение воздуховода, размер и количество диффузоров, производительность вентиляционного блока.

Сечение воздуховода рассчитывается по формуле: S=V*2,8/w, где:

  • S - площадь сечения;
  • V - объем вентканала (рабочий объем воздуха/мощность системы);
  • 2,8 - стандартный коэффициент;
  • w - скорость воздушного потока (около 2-3 м/с).

Технология монтажа вентиляционной системы

Весь технологический процесс делится на такие этапы:

  1. Подготовка оборудования, комплектующих и монтажных инструментов.
  2. Сборка и монтаж: установка воздуховодов, стыковка труб между собой, фиксация калориферов, вентиляторов и фильтров.
  3. Подключение электропитания.
  4. Наладка, тестирование и сдача в эксплуатацию.

Для работы понадобятся:

  • фланцевые шины;
  • металлические уголки разных размеров;
  • анкера, саморезы;
  • теплоизоляционный материал (минвата);
  • армированный скотч;
  • виброизоляционные крепежи.

К монтажу воздуховодов приступают, если выполнены следующие требования:

  • возведены стены, перегородки и межэтажные перекрытия;
  • места установки мокрых фильтров и камер притока гидроизолированы;
  • нанесена разметка под чистовой пол;
  • по направлению прокладки воздуховода стены оштукатурены;
  • установлены двери и окна.

Порядок монтажа воздуховодов:

  1. Отметить точки фиксации крепежных элементов.
  2. Установить крепежи.
  3. Согласно схеме и предлагающейся инструкции собрать воздуховоды в отдельные модули.
  4. Поднять элементы системы и прикрепить их к потолку при помощи хомутов, анкеров или шпилек. Вариант фиксации зависит от габаритов вентканалов.
  5. Состыковать трубы между собой. Места примыкания обработать силиконом или обклеить металлизированным скотчем.
  6. Прикрепить к вентканалам решетки или диффузоры.
  7. Подключить систему управления.
  8. Подвести к вентиляционному комплексу электропитание и выполнить тестовый запуск.
  9. Проверить корректность работы всей системы и каждого элемента по отдельности.

Самый трудоемкий процесс - установка воздуховодов. Требования к монтажным работам различных вентканалов практически одинаковы:

  • гибкие элементы устанавливаются в растянутом положении - так минимизируются потери давления;
  • при «врезке» вентканала в стену надо использовать переходники или гильзы;
  • если в процессе монтажа воздуховод поврежден или деформирован, то его надо заменить новым фрагментом;
  • при размещении вентканалов важно учитывать направление воздушного потока;
  • стыковка гибких воздуховодов выполняется оцинкованными или нейлоновыми хомутами.

Принципы создания естественной вентиляции

К организации естественной циркуляции воздуха выдвигается ряд требований:

  • зимой приточные каналы не должны охлаждать воздух в помещении;
  • в каждую жилую комнату надо обеспечить приток свежего воздуха;
  • циркуляция воздушных потоков должна осуществляться даже при закрытых окнах;
  • появление сквозняков в доме не допустимо;
  • «отработанный» воздух должен беспрепятственно и своевременно удаляться через вытяжные каналы.

Вытяжные вентканалы должны обустраиваться в следующих помещениях:

  1. Технико-санитарных комнатах: санузле, кухне, бассейне, прачечной.
  2. Кладовке и гардеробной. При небольших габаритах помещения достаточно оставить зазор в 1,5-2 см между полом и дверью.
  3. В котельной надо предусмотреть наличие «приточника» и вытяжного канала.
  4. Если комната отделена от вентканала тремя и более дверьми.

В остальных помещениях осуществляется приток свежего воздуха - через щели в оконных рамах. С массовым внедрением пластиковых оконных конструкций эффективность приточной естественной вентиляции очень снизилась. Для повышения ее производительности рекомендуется монтировать приточные стеновые или оконные клапаны.

Стеновой приточник представляет собой цилиндрическую колбу, внутри которой находится тепло-шумоизоляционная вставка, фильтрующий элемент и воздуховод. Пропускная способность большинства моделей составляет 25-30 куб.м/час при перепаде давления в 10 Па.

Порядок монтажа стенового клапана:

  1. Подготовка стены. С внешней стороны снять навесные фасадные панели (если такие есть), а изнутри комнаты нанести разметку. Оптимальное расположение приточника: между подоконником и радиатором или около окна на расстояние 2-2,2 м от пола.
  2. Бурение отверстия. Сначала выполняется стартовое бурение на глубину 7-10 см, убираются фрагменты стены и проводиться окончательное сверление.
  3. Чистка отверстия. Строительную пыль удалить пылесосом.
  4. Установка клапана. Монтировать теплоизоляционный «рукав» и воздуховод. После этого закрепить решетку, корпус клапана и заслонку.

Приточник следует периодически чистить от пыли, копоти и мелких частиц грязи. Фильтрующий элемент достаточно промыть под проточной водой и установить его на место.

Принцип работы естественной циркуляции воздуха: видео.

Технология последовательности монтажа системы отопления.

При монтаже систем отопления должно быть обеспечено:

точное выполнение работ в соответствии с проектом и указаниями СНиПа; плотность соединений, прочность креплений элементов систем; вертикальность стояков; соблюдение уклонов разводящих и магистральных участков; отсутствие кривизны и изломов на прямых участках трубопроводов; исправное действие запорной и регулирующей арматуры, предохранительных устройств и контрольно-измерительных приборов; возможность удаления воздуха, опорожнение системы и наполнение ее водой; надежное закрепление оборудования и ограждений их вращающихся частей.

При монтаже СО применяется следующая последовательность выполнения работ:

Разгрузка, комплектование, доставка трубных и отопительных узлов к месту монтажа;

Монтаж магистральных трубопроводов;

Установка отопительных приборов;

Монтаж стояков и подводок;

Испытание системы.

Монтаж магистральных трубопроводов производится после раскладки монтажных узлов на опоры и подвешивания их к строительным конструкциям путем сборки узлов на льне и сурике или стыковки узлов с последующей их сваркой. Затем магистрали выверяют и закрепляют на опорах и подвесках.

После сборки магистральных трубопроводов к ним подсоединяют стояки и ответвления к оборудованию. Вначале устанавливают отопительные узлы на место и выверяют по уровню и отвесу, затем соединяют отопительные узлы с помощью междуэтажной вставки. Отопительные приборы к междуэтажным вставкам присоединяются на резьбе или сварке.

Технология последовательности монтажа системы вентиляции.

Монтажно-сборочные работы по системам вентиляции и кондиционирования воздуха включают в себя следующие основные последовательно выполняемые процессы:

подготовку объекта к монтажу систем вентиляции; прием и складирование воздуховодов и оборудования; комплектование воздуховодов, фасонных частей и вентиляционных деталей; подбор и комплектование вентиляционного оборудования, а при необходимости проведение предмонтажной ревизии оборудования; сборку узлов; доставку узлов, деталей и элементов к месту монтажа; установку средств крепления; монтаж оборудования; укрупнительную сборку воздуховодов; монтаж магистральных воздуховодов; изготовление и монтаж подмеров; обкатку смонтированного оборудования; наладку и регулирование систем; сдачу систем в эксплуатацию.

При монтаже металлических воздуховодов следует соблюдать следующие основные требования: не допускать опирания воздуховодов на вентиляционное оборудование; вертикальные воздуховоды не должны отклоняться от отвесной линии более чем на 2 мм на 1 м длины воздуховода; фланцы воздуховодов и бесфланцевые соединения не следует заделывать в стены, перекрытия, перегородки и т.п.

Монтаж воздуховодов независимо от их конфигурации и местоположения начинают с разметки и осмотра мест прокладки, с тем чтобы выявить наиболее удобные пути транспортирования и подъем воздуховодов и недостающие средства крепления. Затем устанавливают на проектных отметках грузоподъемные средства, доставляют в рабочую зону монтажа детали воздуховодов и пристреливают недостающие закладные детали. Далее из отдельных деталей собирают укрупненные блоки в соответствии с комплектовочной ведомостью с установкой хомутов для подвески воздуховодов.

При сборке на фланцах следят за тем, чтобы прокладки между фланцами обеспечивали плотность соединения и не выступали внутрь воздуховода.

Монтаж вентиляционного оборудования ведут в соответствии с типовыми технологическими картами в следующем порядке: проверяют комплектность поставки; делают предмонтажную ревизию; доставляют к месту монтажа; поднимают и устанавливают на фундамент, площадку или кронштейны; проверяют правильность установки, выправляют и закрепляют в проектное положение; проверяют работоспособность. При поставке вентиляционного оборудования «россыпью» к перечисленным технологическим операциям добавляется ряд операций по сборке и агрегированию оборудования, которые могут выполняться непосредственно на месте монтажа или сборочной площадке. Метод установки и способы монтажа вентиляционного оборудования.

Литература

1.Методические указания к курсовой работе “Техника и технология заго­товительных, сварочных работ и монтажа” для студентов специальности Т.19.05 – “Теплогазоснабжение, вентиляция и охрана воздушного бас­сейна” / составитель Шабельник Анатолий Афанасьевич, - Мн.: БГПА, 2000;

2.Мельцер А.Н. Справочное пособие по санитарной технике. – Мн.: Высш. школа, 1977. – С.256;

3.Сосков В.И. Технология монтажа и заготовительные работы: Учеб. Для вузов по спец. “Теплогазоснабжение и вентиляция”. – М.: Высш. школа, 1989. – 344 с.

4.Монтаж вентиляционных систем. Под. Ред. И.Г.Староверова. Изд. 3-е, перераб. и доп. М., Стройиздат, 1978

От условий атмосферы помещения напрямую зависит физическое здоровье и работоспособность человека. Поэтому очень важно, чтобы атмосфера в помещении была свежей, с комфортной температурой и умеренной влажностью. Все задачи по созданию комфортного для человека микроклимата решает вентиляция.

Но что касается промышленных объектов, с вредными для здоровья условиями труда, то стандартные системы вентиляции и кондиционирования не в силах обеспечить комфортную атмосферу. На таких предприятиях используется технологическая вентиляция.

Что такое технологическая вентиляция?

Технологическая вентиляция это процесс обеспечения промышленного здания специально заданным составом воздушных масс, с определенными:

  • Температурой;
  • влажностью;
  • скоростью циркуляции.

Данные показатели должны соответствовать установленным нормам того или иного технологического процесса.

Так же задача такой вентиляционной системы – достаточный вывод отработанных воздушных масс.

Промышленная или технологическая?

Промышленная вентиляция – это, по сути, технологическая вентиляция промышленного здания с фильтрацией воздуха циклонами, местными отсосами агрессивных и вредных газов.

Вещества, которые в процессе работы образуются на промышленных и технических предприятиях:

  • Газо-паро выделения, токсичные вещества в том числе;
  • Выделение пыли;
  • Выделение дыма – выделяются мельчайшие твердые частицы, которые в последствии свободно витают в воздухе;
  • Выделение тепла;
  • Выделение влаги и т.д.

Сферы применения

Технологическая вентиляция довольно часто применяется для:

  • Горячих цехов;
  • «Чистых» помещений;
  • Различных линий на производстве;
  • Бассейнов;
  • Типографии.

Довольно распространена:

В бассейнах

При расчете вентсистемы в бассейне главными показателями являются влажность и температура воздуха в здании (согласно СНиП он должен быть на 2 градуса Цельсия выше температуры воды).

При высоких показателях влажности на потолке и стенах помещения собирается конденсат.

При расчете вентсистемы в зданиях такого типа основными параметрами выступают:

  • Площадь здания;
  • Площадь зеркал бассейна;
  • Высота здания;
  • Количество купающихся одновременно людей;
  • И некоторые другие.

Если входящие воздушные массы нужно дополнительно обработать – «подсушить», то в приточной системе устанавливается специальный осушитель.

В горячих цехах

Для устранения запахов, испарений и пара, которые выделяются в процессе приготовления пищи и поддержания комфортных температурных условий устанавливают технологическую производственную вентиляцию.

Расчет системы исходит из комплектации оборудования помещения:

  • Газовых (электрических) плит;
  • Печей;
  • Фритюрниц;
  • Прочего оборудования.

Вытяжная технологическая вентиляция в таких зданиях имеет некие особенности, которые заключаются в том, что вывод отработанных воздушных масс производится через зонты. Такие системы быть не только на вывод отработанных воздушных масс из помещения, но и приточно – вытяжными. Это дает возможность контролировать температуру в цеху.

Зонты для вентилирования горячих цехов, как правило, оборудованы жировыми фильтрами, пламегасителями (в местах, где открыт доступ к огню или углям).

Поскольку в помещениях горячего производства значительный расход воздуха будет целесообразно установить в вентиляции оборудование для рекуперации тепла.

В «чистых» помещениях

Используется для помещений, чистота воздуха в которых играет роль критичного параметра. Довольно распространенный пример такого помещения – операционный медицинский блок.

Для таких учреждений используются специальные «медицинские» установки. Корпус такого оборудования изготавливают из нержавеющей стали. Для более глубокой фильтрации воздуха применяют фильтры высоких классов очистки.

Система воздуховодов таких помещений выполняется из нержавеющей стали. В ней предусмотрены антибактериальные секции, которые оборудованы обеззараживающими ультрафиолетовыми лампами.

В конце воздуховода, перед подачей в помещение, его оборудуют НЕРА фильтрами. Они препятствуют проникновению бактерий и мельчайших частиц пыли.

Помимо медучреждений подобные системы устанавливают на высокоточном производстве, к примеру: в производстве электронных компонентов, фармацевтической промышленности и прочее.

Соответственно, для монтажа, пуско-наладки и эксплуатации таких систем обслуживающий персонал должен иметь особую подготовку.

Добавить комментарий