Общие сведения
768 0

Абиотические, биотические и антропогенные факторы. Характеристика абиотических факторов среды

К абиотическим факторам относятся разнообразные воздействия неживых (физико-химических) компонентов природы на биологические системы.

Выделяют следующие основные абиотические факторы:

Световой режим (освещенность);

Температурный режим (температура);

Водный режим (влажность),

Кислородный режим (содержание кислорода);

Физико-механические свойства среды (плотность, вязкость, давление);

Химические свойства среды (кислотность, содержание разнообразных химических веществ).

Кроме того, существуют дополнительные абиотические факторы: движение среды (ветер, течение воды, прибой, ливни), неоднородность среды (наличие убежищ).

Иногда действие абиотических факторов приобретает катастрофический характер: при пожарах, наводнениях, засухах. При крупных природных и техногенных катастрофах может наступать полная гибель всех организмов.

По отношению к действию основных абиотических факторов выделяют экологические группы организмов.

Для описания этих групп используются термины, включающие корни древнегреческого происхождения: -фиты (от «фитон» - растение), -филы (от «филео» - люблю), -трофы (от «трофе» - пища), -фаги (от «фагос» - пожиратель). Корень -фиты употребляется по отношению к растениям и прокариотам (бактериям), корень -филы - по отношению к животным (реже по отношению к растениям, грибам и прокариотам), корень -трофы - по отношению к растениям, грибам и некоторым прокариотам, корень -фаги - по отношению к животным, а также некоторым вирусам.

Световой режим оказывает прямое влияние, в первую очередь, на растения. По отношению к освещенности выделяют следующие экологические группы растений:

1. гелиофиты - светолюбивые растения (растения открытых пространств, постоянно хорошо освещаемых местообитаний).

2. сциофиты - тенелюбивые растения, которые плохо переносят интенсивное освещение (растения нижних ярусов тенистых лесов).

3. факультативные гелиофиты - теневыносливые растения (предпочитают высокую интенсивность света, но способны развиваться и при пониженной освещенности). Эти растения обладают частично признаками гелиофитов, частично - признаками сциофитов.

Температурный режим. Повышение устойчивости растений к пониженным температурам достигается изменением структуры цитоплазмы, уменьшением поверхности (например, за счет листопада, преобразованием типичных листьев в хвою). Повышение устойчивости растений к высоким температурам достигается изменением структуры цитоплазмы, уменьшением нагреваемой площади, образованием толстой корки (существуют растения-пирофиты, которые способны переносить пожары).

Животные осуществляют регуляцию температуры тела различными способами:

Биохимическая регуляция - изменение интенсивности обмена веществ и уровня теплопродукции;

Физическая терморегуляция - изменение уровня теплоотдачи;

В зависимости от климатических условий у близких видов животных наблюдается изменчивость размеров и пропорций тела, которые описываются эмпирическими правилами, установленными в XIX веке. Правило Бергмана - если два близких вида животных отличаются размерами, то более крупный вид обитает в более холодных условиях, а мелкий - в теплом климате. Правило Аллена - если два близких вида животных обитают в разных климатических условиях, то отношение поверхности тела к объему тела уменьшается с продвижением в высокие широты.

Водный режим. Растения по способности поддерживать водный баланс делятся на пойкилогидрические и гомейогидрические. Пойкилогидрические растения легко поглощают и легко теряют воду, переносят длительное обезвоживание. Как правило, это растения со слабо развитыми тканями (мохообразные, некоторые папоротники и цветковые), а также водоросли, грибы и лишайники. Гомейогидрические растения способны поддерживать постоянное содержание воды в тканях. Среди них выделяют следующие экологические группы:

1. гидатофиты - растения, погруженные в воду; без воды они быстро погибают;

2. гидрофиты - растения крайне переувлажненных местообитаний (берега водоемов, болота); характеризуются высоким уровнем транспирации; способны произрастать лишь при постоянном интенсивном поглощении воды;

3. гигрофиты - требуют влажных почв и высокой влажности воздуха; как и растения предыдущих групп не переносят высыхания;

4. мезофиты - требуют умеренного увлажнения, способны переносить кратковременную засуху; это большая и неоднородная группа растений;

5. ксерофиты - растения, способные добывать влагу при ее недостатке, ограничивать испарение воды или запасать воду;

6. суккуленты - растения с развитой водозапасающей паренхимой в разных органах; сосущая сила корней невелика (до 8 атм.), фиксация углекислого газа происходит ночью (кислый метаболизм толстянковых);

В ряде случаев вода имеется в большом количестве, но малодоступна для растений (низкая температура, высокая соленость или высокая кислотность). В этом случае растения приобретают ксероморфные признаки, например, растения болот, засоленных почв (галофиты).

Животные по отношению к воде делятся на следующие экологические группы: гигрофилы, мезофилы и ксерофилы.

Сокращение потерь воды достигается различными способами. В первую очередь, развиваются водонепроницаемые покровы тела (членистоногие, рептилии, птицы). Совершенствуются выделительные органы: мальпигиевы сосуды у паукообразных и трахейно-дышащих, тазовые почки у амниот. Повышается концентрация продуктов азотного обмена: мочевины, мочевой кислоты и других. Испарение воды зависит от температуры, поэтому важную роль в сохранении воды играют поведенческие реакции избегания перегрева. Особое значение имеет сохранение воды при эмбриональном развитии вне материнского организма, что приводит к появлению зародышевых оболочек; у насекомых формируются серозная и амниотическая оболочки, у яйцекладущих амниот - сероза, амнион и аллантоис.

Химические свойства среды.

Кислородный режим. По отношению к содержанию кислорода все организмы делятся на аэробных (нуждающихся в повышенном содержании кислорода) и анаэробных (не нуждающихся в кислороде). Анаэробы делятся на факультативных (способных существовать и при наличии, и при отсутствии кислорода) и облигатных (не способных существовать в кислородной среде).

1. олиготрофные - нетребовательны к содержанию элементов минерального питания в почве;

2. эутрофные, или мегатрофные - требовательны к плодородию почв; среди эутрофных растений выделяются нитрофилы, требующие высокого содержания в почве азота;

3. мезотрофные - занимают промежуточное положение между олиготрофными и мегатрофными растениями.

Среди организмов, всасывающих готовые органические вещества всей поверхностью тела (например, среди грибов), различают следующие экологические группы:

Подстилочные сапротрофы - разлагают подстилку.

Гумусовые сапротрофы - разлагают гумус.

Ксилотрофы, или ксилофилы - развиваются на древесине (на мертвых или ослабленных частях растений).

Копротрофы, или копрофилы - развиваются на остатках экскрементов.

Кислотность почвы (рН) также важна для растений. Различают ацидофильные растения, предпочитающие кислые почвы (сфагнумы, хвощи, пушица), кальциефильные, или базофильные, предпочитающие щелочные почвы (полынь, мать-и-мачеха, люцерна) и растения, нетребовательные к рН почвы (сосна, березы, тысячелистник, ландыш).

Температура. К абиотическим факторам среды относятся влажность, свет, лучистая энергия, воздух и его состав и другие неживые природные компоненты. Температура - экологический фактор.

По температуре тела все живые организмы делятся на пойкило- термные (с изменяющейся температурой тела в зависимости от температуры среды) и гомойотермные (организмы с постоянной температурой тела).

К пойкилотермной группе относятся растения, бактерии, вирусы, грибы, простейшие, рыбы, членистоногие и др.

К гомойотермной группе относятся птицы, млекопитающие и человек. Эти организмы регулируют температуру тела независимо от температуры окружающей среды.

По выносливости к низким температурам растения делятся на теплолюбивые и холодоустойчивые. К теплолюбивым относятся виноград, персик, урюк, груша и др., а к холодоустойчивым - мхи, лишайники, сосна, ель, пихта.

Для каждого отдельного организма существует температурный предел. Некоторые организмы устойчивы к колебаниям температуры. Например, рыбы живут при температуре -52°С, бактерии - при -80°С. Некоторые синезеленые водоросли выдерживают -44°С.

Отклонения температуры от постоянного уровня вызывают замедление обмена веществ и разрушение биохимических реакций в белке и постепенно приводят к кристаллизации клеток и полной остановке жизни.

У растений сформировались различные приспособления к колебаниям температуры среды:

1. Осенью уменьшается количество воды в клеточной цитоплазме растений, ее органоиды (глицерин, моносахариды и др.) сгущаются, тем самым приспосабливаются к низкой температуре и переходят в состояние покоя.

2.Зимой у растений наступает стадия покоя в виде споры, семян, клубня, луковицы, корня, корневищ. А крупные деревья сбрасывают листья, сгущается клеточный сок. Благодаря этому они способны переживать суровые условия зимовки.

3. Пойкилотермные животные при неблагоприятных условиях впадают в зимнюю спячку (состояние анабиоза). Анабиоз - это временное замедление обмена веществ и энергии, когда почти полностью отсутствуют все видимые проявления жизни. Зимняя спячка у некоторых организмов (медведи) связана с недостатком пищи.

Гомойотермные животные защищаются от низких температур различными способами:

1. Перемещение животных из холодных районов в теплые (птицы, некоторые млекопитающие).

2. Запасание большого количества жира и утолщение шерстяного покрова (волк, лиса, хищники, птицы, тюлени, кабаны и т. д.).

3. Впадают в зимнюю спячку (сурок, барсук, медведь, грызуны).

Влажность. Влажность также воздействует на организмы как

экологический фактор, чаще всего зависит от климата, температуры и природных зон. Иногда влажность выполняет роль лимитирующего фактора. Недостаток влаги влияет на урожай растений. Особенно недостаток влаги наблюдается в пустынных зонах, а в лесу и болотах, наоборот, ее избыток. В зависимости от влажности действует зональная закономерность на Земле.

Флора и фауна изменяются соответственно рельефу по географическим зонам: тундра, лесотундра, тайга, лесостепь, тропики, экватор. Классификация зон зависит от температуры и влажности.

Среди растений можно выделить экологические группы:

1. Ксерофиты (греч. xerox - "сухой", phytos - "расстояние") - растения засушливых местообитаний (пустыня, полупустыня, степь). Ксерофиты приспособлены к видоизменениям листьев, стеблей (саксаул, жузгун, полынь, хвойник, терескен, ковыль, солянка).

2. Суккуленты (лат. succulentus -"сочный") - форма светолюбивых ксерофитов. Листья, стебли утолщены и видоизменены в колючки.

3. Мезофиты (греч. mesos - "промежуточный") - растут в относительно влажных районах. Листья крупные (береза, груша, луговые травы).

4. Гигрофиты (греч. hygros - "влажный") - растения, растущие в условиях избыточной влажности. Это тростник, рис, кувшинка.

5. Гидрофиты (греч. hudor - "вода") - водные растения, погруженные в воду. К ним относятся элодея, водоросли.

Влажность также играет важную роль в жизни животных. Их разделяют на наземные, водные и земноводные. В свою очередь, наземные животные делятся на лесные, степные, пустынные.

Водные животные - это рыбы, водные млекопитающие (киты, дельфины), членистоногие, губки, моллюски, черви.

Наземные животные-млекопитающие, птицы, пресмыкающиеся, насекомые.

Земноводные - лягушки, морские черепахи и др. В связи с потеплением климата на Земле в последнее время наблюдаются факты повышения средней температуры. Повышение температуры может привести к снижению влажности в природных зонах и превращению экосистем в пустыни. Особенно это заметно в засушливых районах Средней Азии, Казахстана, Малой Азии, Африки, где возможно увеличение объема антропогенных ландшафтов.

Безусловно, это приведет к значительному социально-экономическому ущербу названных стран.

1. Среди абиотических факторов температура и влажность играют основную роль.

2. Соответственно сформированы экологические группы растений и животных.

3. Большое влияние на формирование географических зон на Земле оказывают влажность и температура.

1. Необходима ли температура для живых организмов?

2. На какие экологические группы делятся животные в зависимости от температуры тела? Приведите примеры.

3. Назовите экологические группы растений и приведите примеры.

4. Как классифицируются растения по влажности?

1. Назовите растения засушливых мест и объясните их морфологические особенности.

2. Верблюд может выдержать без воды 40 дней. Чем это объясняется?

Как регулируется питание организмов в состоянии анабиоза?

Как меняется дыхание организмов в зависимости от влажности?

Назовите экологические группы, зависящие от биотических факторов и взаимосвязей организмов.

Испытывают на себе совокупное действие различных условий. Абиотические факторы, биотические факторы и антропогенные влияют на особенности их жизнедеятельности и адаптации.

Что такое экологические факторы?

Все условия неживой природы называют абиотическими факторами. Это, к примеру, количество солнечного излучения или влаги. К биотическим факторам относятся все виды взаимодействия живых организмов между собой. В последнее время все большее влияние на живые организмы имеет деятельность человека. Этот фактор является антропогенным.

Абиотические экологические факторы

Действие факторов неживой природы зависит от климатических условий среды обитания. Одним из них является солнечный свет. От его количества зависит интенсивность фотосинтеза, а значит и насыщенность воздуха кислородом. Именно это вещество необходимо живым организмам для дыхания.

К абиотическим факторам относятся также температурный режим и влажность воздуха. От них зависит видовое разнообразие и вегетационный период растений, особенности жизненного цикла животных. Живые организмы по-разному приспосабливаются к данным факторам. К примеру, большинство покрытосеменных деревьев сбрасывают на зиму листву, чтобы избежать излишней потери влаги. Растения пустынь имеют которая достигает значительных глубин. Это обеспечивает их необходимым количеством влаги. Первоцветы успевают за несколько весенних недель вырасти и отцвести. А период засушливого лета и холодной малоснежной зимы они переживают под землей в виде луковицы. В этом подземном видоизменении побега накапливается достаточное количество воды и питательных веществ.

Абиотические экологические факторы предполагают также влияние местных факторов на живые организмы. К ним относятся характер рельефа, химический состав и насыщенность гумусом почв, уровень солености воды, характер океанических течений, направление и скорость ветра, направленность радиационного излучения. Их влияние проявляется как непосредственно, так и косвенно. Так, характер рельефа обусловливает действие ветров, увлажненности и освещенности.

Влияние абиотических факторов

Факторы неживой природы имеют разный характер воздействия на живые организмы. Монодоминантным является воздействие одного преобладающего влияния при незначительном проявлении остальных. К примеру, если в почве недостаточно азота, корневая система развивается на недостаточном уровне и другие элементы не могут влиять на ее развитие.

Усиление действия одновременно нескольких факторов является проявлением синергизма. Так, если в почве достаточно влаги, растения лучше начинают усваивать и азот, и солнечное излучение. Абиотические факторы, биотические факторы и анропогенные могут быть и провокационными. При раннем наступлении оттепели растения наверняка пострадают от заморозков.

Особенности действия биотических факторов

К биотическим факторам относятся различные формы влияния живых организмов друг на друга. Они также могут быть прямыми и косвенными и проявляться достаточно полярно. В определенных случаях организмы не оказывают влияния. Это типичное проявление нейтрализма. Это редкое явление рассматривается только в случае полного отсутствия прямого воздействия организмов друг на друга. Обитая в общем биогеоценозе, белки и лоси никак не взаимодействуют. Однако на них действует общее количественное соотношение в биологической системе.

Примеры биотических факторов

Биотическим фактором является и комменсализм. К примеру, когда олени разносят плоды репейника, они не получают от этого ни пользы, ни вреда. При этом они приносят значительную пользу, расселяя многие виды растений.

Между организмами часто возникают и Их примерами является мутуализм и симбиоз. В первом случае происходит взаимовыгодное сожительство организмов разных видов. Типичным примером мутуализма являются рак-отшельник и актиния. Ее хищный цветок является надежной защитой членистоногого животного. А раковину актиния использует в качестве жилища.

Более тесным взаимовыгодным сожительством является симбиоз. Его классическим примером являются лишайники. Эта группа организмов представляет собой совокупность нитей грибов и клеток сине-зеленых водорослей.

Биотические факторы, примеры которых мы рассмотрели, можно дополнить и хищничеством. При этом типе взаимодействий организмы одного вида являются пищей для других. В одном случае хищники нападают, умерщвляют и поедают свою жертву. В другом - занимаются поиском организмов определенных видов.

Действие антропогенных факторов

Абиотические факторы, биотические факторы долгое время являлись единственными, влияющими на живые организмы. Однако с развитием человеческого общества его влияние на природу возрастало все больше. Известный ученый В. И. Вернадский даже выделил отдельную оболочку, созданную деятельностью человека, которую он назвал Ноосферой. Вырубка лесов, неограниченная распашка земель, истребление многих видов растений и животных, неразумное природопользование являются основными факторами, которые изменяют окружающую среду.

Среда обитания и ее факторы

Биотические факторы, примеры которых были приведены, наряду с другими группами и формами влияний, в разных средах обитания имеют свою значимость. Наземно-воздушная жизнедеятельность организмов в значительной степени зависит от колебания температуры воздуха. А в водной этот же показатель не так важен. Действие антропогенного фактора в данный момент приобретает особое значение во всех средах обитания других живых организмов.

и адаптация организмов

Отдельной группой можно выделить факторы, которые ограничивают жизнедеятельность организмов. Их называют лимитирующими или ограничивающими. Для листопадных растений к абиотическим факторам относятся количество солнечной радиации и влаги. Они и являются ограничивающими. В водной среде лимитирующими являются ее уровень солености и химический состав. Так глобальное потепление приводит к таянию ледников. В свою очередь это влечет за собой увеличение содержания пресной воды и уменьшение уровня ее солености. В результате растительные и животные организмы, которые не могут приспособиться к изменению данного фактора и адаптироваться, неминуемо гибнут. На данный момент это является глобальной экологической проблемой человечества.

Итак, абиотические факторы, биотические факторы и антропогенные в совокупности действуют на разные группы живых организмов в средах обитания, регулируя их численность и процессы жизнедеятельности, меняя видовое богатство планеты.

) и антропогенные (деятельность человека).

Лимитирующим фактором развития растений является элемент, которого лежит в минимуме. Это определяется законом, называемым законом минимума Ю.Либиха (1840). Либих, химик-органик, один из основоположников, выдвинул теорию минерального питания растений. Урожай культур часто лимитируется элементами питания, присутствующими не в избытке, такими как СО 2 и Н 2 О, а теми, которые требуются в ничтожных количествах. Например: - необходимый элемент питания растений, но его мало содержится в почве. Когда его запасы исчерпываются в результате возделывания одной культуры, то рост растений прекращается, если даже другие элементы находятся в изобилии. Закон Либиха строго применим только в условиях стационарного состояния. Необходимо учитывать и взаимодействие факторов. Так, высокая или доступность одного или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда способен заменять (частично) дефицитный элемент другим, более доступным и химически близким ему. Так, некоторым растениям нужно меньше, если они растут на свету, а моллюски, обитающие в местах, где есть много, заменяют им частично при построении раковины.

Экологические факторы среды могут оказывать на живые воздействия разного рода:

1) раздражители, вызывающие приспособительные изменения физиологических и биохимических функций (например, повышение ведет к увеличению потоотделения у млекопитающих и к охлаждению тела);

2) ограничители, обусловливающие невозможность существования в данных условиях (например, недостаток влаги в засушливых районах препятствует проникновению туда многих );

3) модификаторы, вызывающие анатомические и морфологические изменения (например, запыленность в индустриальных районах некоторых стран привела к образованию черных бабочек березовых пядениц, сохранивших свою светлую окраску в сельских местностях);

4) сигналы, свидетельствующие об изменении других факторов среды.

В характере воздействия экологических факторов на выявлен ряд общих закономерностей.

Закон оптимума - положительное или отрицательное влияние фактора на - зависит от силы его воздействия. Недостаточное или избыточное действие фактора одинаково отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия экологического фактора называется зоной оптимума. Одни виды выносят колебания в широких пределах, другие - в узких. Широкая к какому-либо фактору обозначается прибавлением частицы «эври», узкая - «стено» (эври­термные, стенотермные - по отношению к, эвриотопные и стенотопные - по отношению к местам обитания).

Неоднозначность действия фактора на разные функции. Каждый фактор неоднозначно влияет на разные функции. Оптимум для одних процессов может быть неблагоприятным для других. Например, более 40°С у холоднокровных животных увеличивает интенсивность обменных процессов в, но тормозит двигательную, что приводит к тепловому оцепенению.

Взаимодействие факторов. Оптимальная зона и пределы выносливости по отношению к какому-либо из факторов среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Так, жару легче переносить в сухом, а не во влажном. Угроза замерзания выше при морозе с сильным ветром, нежели в безветренную погоду. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы и полностью заменить один из них другим нельзя. Дефицит тепла в полярных областях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью в летнее время. Для каждого вида животных необходим свой набор экологических факторов.

Воздействие химического компонента абиотического фактора на живые. Абиотические факторы создают условия обитания растительных и животных и оказывают прямое или косвенное влияние на жизнедеятельность последних. К абиотическим факторам относят элементы неорганической природы: материнская почвы, химический состав и последней, солнечный свет, теплота, и ее химический состав, его состав и, барометрическое и водное, естественный радиационный фон и др. Химическими компонентами абиотических факторов являются питательные, следы элементов, и, ядовитые, кислотность (рН) среды.

Влияние рН на выживаемость организмов-гидробионтов. Большинство не выносят колебаний величины рН. у них функционирует лишь в среде со строго определенным режимом кислотности-щелочности. водородных во многом зависит от карбонатной системы, которая является важной для всей и описывается сложной системой, устанавливающихся при в природных пресных свободного СО 2, по :

СО 2 + Н 2 О + Н 2 СО 3 + Н + + НС.

Таблица 1.1

Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975)

Характер воздействия на пресноводных рыб

Гибельно для рыб; выживают некоторые растения и беспозвоночные

Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации

Гибельно для многих рыб, размножается только щука

Опасно для икры лососевых рыб

Область, пригодная для жизни

Опасно для окуня и лососевых рыб в случае длительного воздействия

Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия

Переносится плотвой в течение очень короткого времени

Смертельно для всех рыб

Влияние количества растворенного на видовой состав и численность гидробионтов. Степень насыщенности обратно пропорциональна ее. растворенного О 2 в поверхностных изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления. В случае высокой интенсивности может быть значительно пересыщена О 2 (20 мг/л и выше). В водной среде является ограничивающим фактором. О 2 составляет в 21% (по объему) и около 35% от всех, растворенных в. его в морской составляет 80% от в пресной. Распределение 2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к в среде. водах этот показатель очень изменчив. Соленость обычно выражается в промилле (‰) и является одной из основных характеристик водных масс, распределения морских, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).

В солоноватых обитают виды, способные переносить повышенную соленость. В эструариях, где соленость ниже 3 ‰, морская фауна беднее. В Балийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.

Водные подразделяются на пресноводные и морские по степени солености, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эструариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эструариев рек, солоноватоводных (5 - 35 ‰) и ультрасоленых (50 - 250 ‰), а также проходные рыбы, нерестящиеся в пресной (< 5 ‰). Наиболее удивительный пример - рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные осмотически активных в внутренней среды.

По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные - животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.

Устойчивость по отношению к изменению солености меняется с. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой ; десятиногие переходят в малосоленые, когда становится слишком высокой. Виды, обитающие в солоноватых, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эструариях и лагунах - крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море - 10 - 12 см, а в Японском - 14 - 16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰имеет размер 10 мм, при 20 ‰ достигает 24 - 32 мм. Одновременно изменяется форма тела, придатков и окраска.

К абиотическим факторам относятся факторыкосмические (солнечная радиация)климатические (свет, температура, влажность, атмосферное давление, осадки, движение воздуха),эдафические или почвенные факторы (механический состав почвы, влагоемкость, воздухопроницаемость, плотность почвы),орографические факторы (рельеф, высота над уровнем моря, экспозиция склона),химические факторы (газовый состав воздуха, солевойсостави кислотность воды и почвенных растворов). Абиотические факторы воздействуют на живые организмы (прямо или косвенно) через те или иные стороны обмена веществ. Их особенностью является односторонность воздействия: организм может к ним приспособиться, но не оказывает на них существенного влияния.

I . Космические факторы

Биосфера, как среда обитания живых организмов, не изолирована от сложных процессов, протекающих в космическом пространстве, причем связанных непосредственно не только с Солнцем. На Землю попадает космическая пыль, метеоритное вещество. Земля периодически сталкивается с астероидами, сближается с кометами. Через Галактику проходят вещества и волны, возникающие в результате вспышек сверхновых звезд. Разумеется, наша планета наиболее тесно связана с процессами, происходящими на Солнце, – с так называемой солнечной активностью. Суть этого явления состоит в превращении энергии, накапливающейся в магнитных полях Солнца, в энергию движения газовых масс, быстрых частиц, коротковолнового электромагнитного излучения.

Наиболее интенсивные процессы наблюдаются в центрах активности, называемых активными областями, в которых наблюдается усиление магнитного поля, возникают области повышенной яркости, а также так называемые солнечные пятна. В активных областях могут происходить взрывоподобные выделения энергии, сопровождающиеся выбросами плазмы, внезапным появлением солнечных космических лучей, усилением коротковолнового и радиоизлучения. Известно, что изменения уровня вспышечной активности имеют циклический характер с обычным циклом, равным 22 годам, хотя известны колебания периодичностью от 4,3 до 1850 лет. Солнечная активность влияет на ряд жизненных процессов на Земле – от возникновения эпидемий и всплесков рождаемости до крупных климатических преобразований. Это было показано еще в 1915 г. русским ученым А. Л. Чижевским, основателем новой науки – гелиобиологии (от греч. хелиос - Солнце), рассматривающей воздействие изменений активности Солнца на биосферу Земли.

Таким образом, к числу важнейших космических факторов относится связанное с солнечной активностью электромагнитное излучение с широким диапазоном длин волн. Поглощение атмосферой Земли коротковолнового излучения приводит к образованию защитных оболочек, в частности озоносферы. Из других космических факторов следует назвать корпускулярное излучение Солнца.

Солнечная корона (верхняя часть солнечной атмосферы), состоящая в основном из ионизированных атомов водорода - протонов - с примесью гелия, непрерывно расширяется. Покидая корону, этот поток водородной плазмы распространяется в радиальном направлении и достигает Земли. Его и называют солнечным ветром. Он заполняет всю область солнечной системы; и постоянно обтекает Землю, взаимодействуя с ее магнитным полем. Понятно, что это связано с динамикой магнитной активности (например, магнитные бури) и непосредственно сказывается на жизни на Земле.

Изменения ионосферы в полярных областях Земли также связаны с солнечными космическими лучами, которые вызывают ионизацию. При мощных вспышках солнечной активности воздействие солнечных космических лучей может кратковременно превышать обычный фон галактических космических лучей. В настоящее время наукой накоплено много фактических материалов, иллюстрирующих влияние космических факторов на биосферные процессы. Доказана, в частности, чувствительность беспозвоночных животных к изменениям солнечной активности, установлена корреляция ее вариаций с динамикой нервной и сердечно-сосудистой систем человека, а также с динамикой заболеваний – наследственных, онкологических, инфекционных и др.

Особенности воздействия на биосферу со стороны космических факторов и проявлений солнечной активности состоят в том, что поверхность нашей планеты отделена от Космоса мощным слоем вещества в газообразном состоянии, т. е. атмосферой.

II . Климатические факторы

Важнейшая климатоформирующая функция принадлежит атмосфере как среде, воспринимающей космические и связанные с Солнцем факторы.

1. Свет. Энергия солнечного излучения распространяется в пространстве в виде электромагнитных волн. Около 99 % ее составляют лучи с длиной волны 170-4000 нм, в том числе 48 % приходится на видимую часть спектра с длиной волны 400-760 нм, а 45 % - на инфракрасную (длина волны от 750 нм до 10" 3 м), около 7 % - на ультрафиолетовую (длина волны менее 400 нм). В процессах фотосинтеза наиболее важную роль играет фотосинтетически активная радиация (380-710 нм).

Количество энергии солнечного излучения, поступающе­го к Земле (к верхней границе атмосферы), практически постоянно и оценивается значением 1370 Вт/м2. Эта величина называется солнечной постоянной.

Проходя через атмосферу, солнечное излучение рассеивается на молекулах газов, на взвешенных примесях (твердых и жидких), поглощается водяными парами, озоном, диоксидом углерода, пылевидными частицами. Рассеянное солнечное излучение частично доходит до земной поверхности. Его видимая часть создает свет днем при отсутствии прямых солнечных лучей, например при сильной облачности.

Энергия солнечного излучения не только поглощается поверхностью Земли, но и отражается ею в виде потока длинноволнового излучения. Более светло окрашенные поверхности отражают свет более интенсивно, чем темные. Так, чистый снег отражает 80-95 %, загрязненный - 40-50, черноземная почва - 5-14, светлый песок - 35-45, полог ле­са - 10-18%. Отношение отражаемого поверхностью потока солнечного излучения к поступившему называется альбедо.

С лучистой энергией Солнца связана освещенность земной поверхности, определяющаяся продолжительностью и интенсивностью светового потока. У растений и животных в процессе эволюции выработались глубокие физиологические, морфологические и поведенческие адаптации к динамике освещенности. У всех животных, включая человека, существуют так называемые циркадные (суточные) ритмы активности.

Требования организмов к определенной продолжительности темного, и светлого времени носят название фотопериодизма, причем особенно важное значение имеют сезонные колебания освещенности. Прогрессивная тенденция к уменьшению продолжительности светового дня от лета к осени служит информацией для подготовки к зимовке или спячке. Поскольку фотопериодические условия зависят от широты, у ряда видов (в первую очередь у насекомых) могут образовываться географические расы, различающиеся по пороговой продолжительности дня.

2. Температура

Температурная стратификация – это изменение температуры воды по глубине водного, объекта. Непрерывное, изменение температуры характерно для любых экологических систем. Часто для обозначения такого изменения используют слово "градиент". Однако температурная стратификация воды в водоеме – специфическое явление. Так, в летний период поверхностные воды нагреваются сильнее, чем глубинные. Поскольку более теплая вода имеет меньшую плотность и меньшую вязкость, то ее циркуляция происходит в поверхностном, нагретом слое и с более плотной и более вязкой холодной водой она не смешивается. Между теплым и холодным слоем образуется промежуточная зона с резким градиентом температуры, которую называют термоклиной. Общий температурный режим, связанный с периодиче­скими (годовыми, сезонными, суточными) изменениями тем­пературы, также является важнейшим условием обитания живых организмов в воде.

3. Влажность. Влажность воздуха – это содержание в воздухе водяного пара. Наиболее богаты влагой нижние слои атмосферы (до высоты 1,5-2,0 км), где концентрируется примерно 50 % всей атмосферной влаги. Содержание водяного пара в воздухе зависит от температуры последнего.

4. Атмосферные осадки – это вода в жидком (капли) или твердом состоянии, выпадающая на земную поверхность из облаков или осаждающаяся непосредственно из воздуха вследствие сгущения водяного пара. Из облаков могут выпадать дождь, снег, морось, ледяной дождь, снежные зерна, ледяная крупа, град. Количество выпавших осадков измеряется толщиной слоя выпавшей воды в миллиметрах.

Осадки тесно связаны с влажностью воздуха и представляют собой результат конденсации водяных паров. Вследствие конденсации в приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги. Конденсация и кристаллизация паров воды в более высоких слоях атмосферы образуют облака различной структуры и являются причиной атмосферных осадков. Выделяют влажные (гумидные) и сухие (аридные) зоны земного шара. Максимальное количество осадков выпадает в зоне тропических лесов (до 2000 мм/год), в то время как в аридных зонах (например, в пустынях) – 0,18 мм/год.

Атмосферные осадки – важнейший фактор, оказывающий влияние на процессы загрязнения природной среды. Присутствие водяных паров (тумана) в воздухе при одновременном поступлении в него, например, диоксида серы приводит к тому, что последний превращается в сернистую кислоту, которая окисляется до серной. В условиях застоя воздуха (штиль) образуется устойчивый токсичный туман. Подобные вещества могут вымываться из атмосферы и выпадать на поверхность суши и океана. Типичным результатом являются так называемые кислотные дожди. Твердые примеси в атмосфере могут служить ядрами конденсации влаги, вызывая разные формы осадков.

5. Атмосферное давление. Нормальным давлением принято считать 101,3 кПа (760 мм рт. ст.). В пределах поверхности земного шара существуют области высокого и низкого давления, причем наблюдаются сезонные и суточные минимумы и максимумы давления в одних и тех же точках. Различаются также морской и континентальный типы динамики атмосферного давления. Периодически возникающие области низ­кого давления носят название циклонов и характеризуются мощными потоками воздуха, движущегося по спирали и перемещающегося в пространстве к центру. Циклоны связаны с неустойчивой погодой и большим количеством осадков.

В противоположность им, антициклоны характеризуются устойчивой погодой, низкими скоростями ветра, в ряде случаев температурными инверсиями. При антициклонах могут возникать неблагоприятные с точки зрения переноса и рассеивания примесей метеорологические условия.

6. Движение воздуха. Причиной образования ветровых потоков и перемещения воздушных масс является неравномерный нагрев разных участков земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, но и вращение Земли также влияет на циркуляцию воздушных масс в глобальном масштабе. В приземном слое воздуха движение воздушных масс оказывает влияние на все метеорологические факторы окружающей среды, т.е. на климат, включая режимы температуры, влажности, испарения с поверхности суши и моря, а также транспирацию растений.

Особенно важно знать, что ветровые потоки – важнейший фактор переноса, рассеивания и выпадения загрязняющих веществ, поступающих в атмосферу от промышленных предприятий, теплоэнергетики, транспорта. Сила и направление ветра определяют режимы загрязненности окружающей среды. Например, штиль в сочетании с инверсией температуры воздуха рассматривается как неблагоприятные метеорологические условия (НМУ), способствующие длительному сильному загрязнению воздуха в районах промышленных предприятий и проживания людей.

Общие закономерности распределения уровней и региональных режимов экологических факторов

Географическая оболочка Земли (как и биосфера) неоднородна в пространстве, она дифференцирована на отличающиеся друг от друга территории. Ее последовательно делят на физико-географические пояса, географические зоны, внутризональные горные и равнинные области и подобласти, подзоны и т. д.

Физико-географический пояс – это крупнейшая таксономическая единица географической оболочки, слагающаяся из ряда географических зон, близких по тепловому балансу и режиму увлажнения.

Выделяют, в частности, арктический и антарктический, субарктический и субантарктический, северные и южные умеренные и субтропические, субэкваториальный и экваториальный пояса.

Географическая (она же – природная, ландшафтная) зона – это значительная часть физико-географического пояса с особым характером геоморфологических процессов, с особыми типами климата, растительности, почв, животного и растительного мира.

Зоны имеют преимущественно (хотя далеко не всегда) вытянутые в широком плане очертания и характеризуются сходными природными условиями, определенной последовательностью в зависимости от широтного положения – это широтная географическая зональность, обусловленная главным образом характером распределения солнечной энергии по широтам, т. е. с уменьшением ее прихода от экватора к полюсам и неравномерностью увлажнения.

Наряду с широтной существует также типичная для горных районов вертикальная (или высотная) зональность, т. е. смена растительности, животного мира, почв, климатических условий, по мере подъема от уровня моря, связанная в основном с изменением теплового баланса: перепад температуры воздуха составляет 0,6-1,0 °С на каждые 100 м высоты.

III . Эдафические или почвенные факторы

Согласно определению В. Р. Вильямса, почва – рыхлый поверхностный горизонт суши, способный производить урожай растений. Важнейшим свойством почвы является ее плодородие, т.е. способность обеспечивать органическое и минеральное питание растений. Плодородие зависит от физических и химических свойств почвы, которые в совокупности представляют собой эдафогенные (от греч. эдафос - почва), или эдафические, факторы.

1. Механический состав почвы . Почва – продукт физического, химического и биологического преобразования (выветривания) горных пород, является трехфазной средой, содержащей твердые; жидкие и газообразные компоненты. Она формируется в результате сложных взаимодействий климата, растений, животных, микроорганизмов и рассматривается как биокосное тело, содержащее живые и неживые компоненты.

В мире существует множество типов почв, связанных с различными климатическими условиями и спецификой процессов их образования. Почвы характеризуются определенной поясностью, хотя пояса далеко не всегда имеют сплошной характер. Среди главнейших типов почв России можно назвать тундровые, подзолистые почвы таежно-лесной зоны (самые распространенные), черноземы, серые лесные почвы, каштановые почвы (к югу и востоку от черноземных), бурые почвы (характерны для сухих степей и полупустынь), красноземы, солончаки и др.

В результате перемещения и превращения веществ почва обычно расчленяется на отдельные слои, или горизонты, сочетание которых на разрезе образует профиль почвы (рис. 2), который в общем виде выглядит следующим образом:

    самый верхний горизонт (А 1 ), содержащий продукты перегнивания органики, является наиболее плодородным. Он называется гумусовым или перегнойным, имеет зернисто-комковатую или слоистую структуру. Именно в нем происходят сложные физико-химические процессы, в результате которых образуются элементы питания растений. Гумус имеет разную окраску.

    Над гумусовым горизонтом располагается слой растительного опада, который принято называть подстилкой (А 0, ). Он состоит из еще не разложившихся растительных остатков.

    Ниже гумусового горизонта расположен малоплодородный белесый слой толщиной 10-12 см (А 2). Питательные вещества вымыты из него водой или кислотами. Поэтому его называют горизонтом вымывания или выщелачивания (элювиальным). Собственно он и является подзолистым горизонтом. Слабо растворяются и остаются в этом горизонте кварц и оксид алюминия.

    Еще ниже залегает материн­ская порода (С).

Добавить комментарий